Step 1: Convert the flow rate from L.s\(^{-1}\) to m\(^3\).s\(^{-1}\).
The flow rate is given as 150 L.s\(^{-1}\). We convert this to cubic meters per second:
\[
Q = 150 \, {L.s}^{-1} = 150 \times 10^{-3} \, {m}^3.{s}^{-1} = 0.15 \, {m}^3.{s}^{-1}.
\]
Step 2: Convert the pressure rise to head.
The pressure rise is given as 5003 kN.m\(^{-2}\). We convert this to head using the formula:
\[
H = \frac{P}{\rho g},
\]
Where:
- \(P\) is the pressure rise (5003 kN.m\(^{-2}\)),
- \(\rho\) is the density of water (\(1000 \, {kg/m}^3\)),
- \(g\) is the acceleration due to gravity (\(9.81 \, {m/s}^2\)).
Substituting the values:
\[
H = \frac{5003 \times 10^3}{1000 \times 9.81} = \frac{5003 \times 10^3}{9810} \approx 510 \, {m}.
\]
Step 3: Calculate the specific speed.
Now that we have \(N = 1450\) rpm, \(Q = 0.15\) m\(^3\).s\(^{-1}\), and \(H = 510\) m, we can calculate the specific speed using the formula:
\[
N_s = \frac{1450 \sqrt{0.15}}{510^{3/4}} \approx \frac{1450 \times 0.3873}{510^{0.75}} \approx \frac{561.5}{167.7} \approx 631.
\]
Thus, the specific speed of the pump is 631.