The velocity \( v \) of the wave is given by:
\[
v = \frac{\text{distance}}{\text{time}} = \frac{12 \, \text{cm}}{0.3 \, \text{s}} = 4 \, \text{cm/s}
\]
Next, the wave number \( k \) and angular frequency \( \omega \) are related to the wavelength \( \lambda \) and frequency \( f \) as:
\[
k = \frac{2 \pi}{\lambda} = \frac{2 \pi}{7.5} = 0.83 \, \text{cm}^{-1}
\]
\[
\omega = v k = 4 \times 0.83 = 3.35 \, \text{rad/s}
\]
Thus, the wave equation is:
\[
y = A \cos(kx - \omega t) = A \cos(0.83x - 3.35t)
\]
Given that the amplitude \( A \) is 2 cm (maximum displacement), the equation becomes:
\[
y = 2 \cos(0.83x - 3.35t) \, \text{cm}
\]