So, the correct ans is (A): 10 V.
Match List-I with List-II:
| List-I (Modulation Schemes) | List-II (Wave Expressions) |
|---|---|
| (A) Amplitude Modulation | (I) \( x(t) = A\cos(\omega_c t + k m(t)) \) |
| (B) Phase Modulation | (II) \( x(t) = A\cos(\omega_c t + k \int m(t)dt) \) |
| (C) Frequency Modulation | (III) \( x(t) = A + m(t)\cos(\omega_c t) \) |
| (D) DSB-SC Modulation | (IV) \( x(t) = m(t)\cos(\omega_c t) \) |
Choose the correct answer:

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
A system that describes the information exchange between two points is called the communication system. The transmission and reception process of information is called communication. The major elements of communication are such as:
The following are the examples of communication systems:
Turning on Signal specification or technology, the communication system is categorized as follows:
