Understanding the Problem
We are given the condition for the first minimum in single-slit diffraction and need to find the slit width (\(a\)).
Solution
1. Condition for First Minimum:
The condition for the first minimum in single-slit diffraction is:
\( a \sin \theta = \lambda \)
where:
2. Substitute Values:
Given \(\theta = 30^\circ\) and \(\lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m}\), we have:
\( a \sin(30^\circ) = 600 \times 10^{-9} \, \text{m} \)
3. Solve for Slit Width (a):
We know \(\sin(30^\circ) = \frac{1}{2}\).
Substituting:
\( a \left( \frac{1}{2} \right) = 600 \times 10^{-9} \, \text{m} \)
Solving for \(a\):
\( a = 2 \times 600 \times 10^{-9} \, \text{m} = 1200 \times 10^{-9} \, \text{m} \)
4. Convert to Micrometers:
\( a = 1200 \, \text{nm} = 1.2 \, \mu\text{m} \)
Final Answer
The slit width is \( 1.2 \, \mu\text{m} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: