Step 1: Understanding the Relation Between \( A \), \( \delta_m \), and \( \mu \)
The refractive index \( \mu \) of the prism is given by the equation:
\[
\mu = \frac{\sin \left( \frac{A + \delta_m}{2} \right)}{\sin \left( \frac{A}{2} \right)}
\]
This equation helps in finding the angle of minimum deviation \( \delta_m \).
Step 2: Expressing \( \delta_m \) in Terms of \( A \)
We know that:
\[
\cot \frac{A}{2} = \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} = \frac{\sin \left( \frac{A + \delta_m}{2} \right)}{\sin \frac{A}{2}}
\]
Rearranging the equation, we get:
\[
\sin \left( \frac{180^{\circ}}{2} - \frac{A}{2} \right) = \sin \left( \frac{A + \delta_m}{2} \right)
\]
Since we know that \( \sin(\theta) = \sin(180^\circ - \theta) \), we equate:
\[
\frac{180^{\circ}}{2} - \frac{A}{2} = \frac{A + \delta_m}{2}
\]
Step 3: Solving for \( \delta_m \)
Simplifying the above equation:
\[
180^{\circ} - 2A = \delta_m
\]
Thus, the angle of minimum deviation is given by:
\[
\delta_m = 180^{\circ} - 2A
\]
Final Answer: The angle of minimum deviation is \( 180^{\circ} - 2A \).