The active power (\(P\)) and reactive power (\(Q\)) are related to the apparent power (\(S\)) by the following equations:
\[
S = \sqrt{P^2 + Q^2}
\]
\[
S = V_{\text{rms}} \times I_{\text{rms}}
\]
Where:
- \(S\) = Apparent power
- \(P\) = Active power
- \(Q\) = Reactive power
- \(V_{\text{rms}}\) = RMS voltage
- \(I_{\text{rms}}\) = RMS current
We are given:
- \(V_{\text{rms}} = 200 \, \text{V}\)
- \(I_{\text{rms}} = 2.5 \, \text{A}\)
- \(P = 300 \, \text{W}\)
First, calculate the apparent power \(S\):
\[
S = V_{\text{rms}} \times I_{\text{rms}} = 200 \times 2.5 = 500 \, \text{VA}
\]
Next, use the relationship \(S = \sqrt{P^2 + Q^2}\) to find \(Q\):
\[
500 = \sqrt{300^2 + Q^2}
\]
Square both sides:
\[
250000 = 90000 + Q^2
\]
Solve for \(Q^2\):
\[
Q^2 = 250000 - 90000 = 160000
\]
Take the square root:
\[
Q = \sqrt{160000} = 400 \, \text{VAR}
\]
Thus, the reactive power is 400 VAR.