Step 1: Damped oscillation formula.
Amplitude decays as:
\[
x(t) = X_0 e^{-\zeta \omega_n t} \cos(\omega_d t)
\]
where $\omega_d = \omega_n\sqrt{1-\zeta^2}$.
Step 2: Damped period.
\[
T_d = \frac{2\pi}{\omega_d} = \frac{2\pi}{\omega_n\sqrt{1-\zeta^2}}
\]
Step 3: Time after 2 cycles.
\[
t = 2T_d = \frac{4\pi}{\omega_n\sqrt{1-\zeta^2}}
\]
Step 4: Amplitude after $t$.
\[
X(t) = X_0 e^{-\zeta \omega_n t}
\]
\[
= X_0 \exp\left(-\zeta \omega_n \cdot \frac{4\pi}{\omega_n\sqrt{1-\zeta^2}}\right)
\]
\[
= X_0 \exp\left(-\frac{4\pi \zeta}{\sqrt{1-\zeta^2}}\right)
\]
Step 5: Substitute values.
$X_0 = 10 \,\text{cm}, \, \zeta=0.1$
\[
\frac{4\pi \zeta}{\sqrt{1-\zeta^2}} = \frac{4\pi(0.1)}{\sqrt{1-0.01}} = \frac{1.257}{0.995} \approx 1.263
\]
So,
\[
X = 10 e^{-1.263} = 10 \times 0.819 = 8.19 \,\text{cm}
\]
\[
\boxed{8.19 \,\text{cm}}
\]
A uniform rigid bar of mass 3 kg is hinged at point F, and supported by a spring of stiffness \( k = 100 \, {N/m} \), as shown in the figure. The natural frequency of free vibration of the system is ___________ rad/s (answer in integer).