A uniform rigid bar of mass 3 kg is hinged at point F, and supported by a spring of stiffness \( k = 100 \, {N/m} \), as shown in the figure. The natural frequency of free vibration of the system is _____________ rad/s (answer in integer).
We are given the following:
Mass of the bar, \( m = 3 \, {kg} \),
Spring stiffness, \( k = 100 \, {N/m} \),
Length of the bar is \( L = 1 \, {m} \),
The system is hinged at point F and supported by a spring at point G.
Step 1:
The moment of inertia \( I \) of a uniform rigid bar of mass \( m \) and length \( L \), hinged at one end, is given by: \[ I = \frac{1}{3} m L^2 \] Substitute the given values:
\( m = 3 \, {kg} \),
\( L = 1 \, {m} \).
\[ I = \frac{1}{3} \times 3 \times 1^2 = 1 \, {kg} \cdot {m}^2 \] Step 2:
The natural frequency \( \omega_n \) of the system is given by the formula: \[ \omega_n = \sqrt{\frac{k}{I}} \] Substitute the given values:
\( k = 100 \, {N/m} \),
\( I = 1 \, {kg} \cdot {m}^2 \).
\[ \omega_n = \sqrt{\frac{100}{1}} = \sqrt{100} = 10 \, {rad/s} \] Thus, the natural frequency of the system is: \[ \boxed{10} \, {rad/s} \]
A single-stage axial compressor, with a 50 % degree of reaction, runs at a mean blade speed of 250 m/s. The overall pressure ratio developed is 1.3. Inlet pressure and temperature are 1 bar and 300 K, respectively. Axial velocity is 200 m/s. Specific heat at constant pressure, \( C_p = 1005 \, {J/kg/K} \) and specific heat ratio, \( \gamma = 1.4 \). The rotor blade angle at the outlet is __________ degrees (rounded off to two decimal places).
An ideal ramjet with an optimally expanded exhaust is travelling at Mach 3. The ambient temperature and pressure are 260 K and 60 kPa, respectively. The inlet air mass flow rate is 50 kg/s. Exit temperature of the exhaust gases is 700 K. Fuel mass flow rate is negligible compared to air mass flow rate. Gas constant is \( R = 287 \, {J/kg/K} \), and specific heat ratio is \( \gamma = 1.4 \). The thrust generated by the engine is __________ kN (rounded off to one decimal place).
A monopropellant liquid rocket engine has 800 injectors of diameter 4 mm each, and with a discharge coefficient of 0.65. The liquid propellant of density 1000 kg/m³ flows through the injectors. There is a pressure difference of 10 bar across the injectors. The specific impulse of the rocket is 1500 m/s. The thrust generated by the rocket is __________ kN (rounded off to one decimal place).
Air at temperature 300 K is compressed isentropically from a pressure of 1 bar to 10 bar in a compressor. Eighty percent of the compressed air is supplied to a combustor. In the combustor, 0.88 MJ of heat is added per kg of air. The specific heat at constant pressure is \( C_p = 1005 \, {J/kg/K} \) and the specific heat ratio is \( \gamma = 1.4 \). The temperature of the air leaving the combustor is _______ K (rounded off to one decimal place).
An ideal turbofan with a bypass ratio of 5 has core mass flow rate, \( \dot{m}_a,c = 100 \, {kg/s} \). The core and the fan exhausts are separate and optimally expanded. The core exhaust speed is 600 m/s and the fan exhaust speed is 120 m/s. If the fuel mass flow rate is negligible in comparison to \( \dot{m}_a,c \), the static specific thrust (\( \frac{T}{\dot{m}_a,c} \)) developed by the engine is _________ Ns/kg (rounded off to the nearest integer).