Using the simple interest formula:
\[
SI = \frac{P \times R \times T}{100}
\]
\[
225 = \frac{P \times R \times 3}{100}
\]
\[
P \times R = \frac{225 \times 100}{3} = 7500
\]
Now, using the compound interest formula:
\[
CI = P \left( \left(1 + \frac{R}{100} \right)^T - 1 \right)
\]
Substituting the values for \( CI = 165 \) and \( T = 2 \):
\[
165 = P \left( \left(1 + \frac{R}{100} \right)^2 - 1 \right)
\]
Solving, we get \( R = 20% \).