Step 1: Escape Velocity Formula
The escape velocity is given by:
\[
v_e = \sqrt{\frac{2GM}{R}}
\]
where:
- \( G = 6.66 \times 10^{-11} \) N m\(^2\) kg\(^{-2}\) (Gravitational constant),
- \( M = 6 \times 10^{24} \) kg (mass of the sphere),
- \( v_e = 3 \times 10^5 \) m/s (escape velocity),
- \( R \) = Radius of the sphere.
Step 2: Solving for \( R \)
Rearranging the equation:
\[
R = \frac{2GM}{v_e^2}
\]
Substituting values:
\[
R = \frac{2 \times (6.66 \times 10^{-11}) \times (6 \times 10^{24})}{(3 \times 10^5)^2}
\]
\[
R = \frac{7.992 \times 10^{14}}{9 \times 10^{10}}
\]
\[
R = 8.88 \times 10^3 \text{ m} = 575 \text{ km}
\]
Conclusion
Thus, the correct answer is:
\[
575 \text{ km}
\]