For an adiabatic process, the work done \( W \) is given by:
\[ W = \frac{nR\Delta T}{1-\gamma}. \]
1. **Using the Adiabatic Condition:**
Since the process is adiabatic, \( TV^{\gamma-1} = \text{constant} \). Let the initial temperature be \( T \) and the final temperature be \( T_f \) when the volume is doubled. Thus,
\[ TV^{\gamma-1} = T_f(2V)^{\gamma-1}. \]
2. **Calculate \( T_f \):**
Simplifying, we get:
\[ T_f = T \left(\frac{1}{2}\right)^{\frac{\gamma-1}{\gamma}} = T \left(\frac{1}{2}\right)^{\frac{1}{2}} = \frac{T}{\sqrt{2}}. \]
3. **Calculate the Work Done:**
Substitute into the work formula:
\[ W = \frac{R(T - T_f)}{1 - \frac{3}{2}} = \frac{R \left( T - \frac{T}{\sqrt{2}} \right)}{-\frac{1}{2}}. \] Simplifying further:
\[ W = 2RT\frac{\left(\sqrt{2} - 1\right)}{\sqrt{2}} = RT(2 - \sqrt{2}). \] **Answer:** \( RT(2 - \sqrt{2}) \)
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
