For an adiabatic process, the work done \( W \) is given by:
\[ W = \frac{nR\Delta T}{1-\gamma}. \]
1. **Using the Adiabatic Condition:**
Since the process is adiabatic, \( TV^{\gamma-1} = \text{constant} \). Let the initial temperature be \( T \) and the final temperature be \( T_f \) when the volume is doubled. Thus,
\[ TV^{\gamma-1} = T_f(2V)^{\gamma-1}. \]
2. **Calculate \( T_f \):**
Simplifying, we get:
\[ T_f = T \left(\frac{1}{2}\right)^{\frac{\gamma-1}{\gamma}} = T \left(\frac{1}{2}\right)^{\frac{1}{2}} = \frac{T}{\sqrt{2}}. \]
3. **Calculate the Work Done:**
Substitute into the work formula:
\[ W = \frac{R(T - T_f)}{1 - \frac{3}{2}} = \frac{R \left( T - \frac{T}{\sqrt{2}} \right)}{-\frac{1}{2}}. \] Simplifying further:
\[ W = 2RT\frac{\left(\sqrt{2} - 1\right)}{\sqrt{2}} = RT(2 - \sqrt{2}). \] **Answer:** \( RT(2 - \sqrt{2}) \)
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).