For an adiabatic process, the work done \( W \) is given by:
\[ W = \frac{nR\Delta T}{1-\gamma}. \]
1. **Using the Adiabatic Condition:**
Since the process is adiabatic, \( TV^{\gamma-1} = \text{constant} \). Let the initial temperature be \( T \) and the final temperature be \( T_f \) when the volume is doubled. Thus,
\[ TV^{\gamma-1} = T_f(2V)^{\gamma-1}. \]
2. **Calculate \( T_f \):**
Simplifying, we get:
\[ T_f = T \left(\frac{1}{2}\right)^{\frac{\gamma-1}{\gamma}} = T \left(\frac{1}{2}\right)^{\frac{1}{2}} = \frac{T}{\sqrt{2}}. \]
3. **Calculate the Work Done:**
Substitute into the work formula:
\[ W = \frac{R(T - T_f)}{1 - \frac{3}{2}} = \frac{R \left( T - \frac{T}{\sqrt{2}} \right)}{-\frac{1}{2}}. \] Simplifying further:
\[ W = 2RT\frac{\left(\sqrt{2} - 1\right)}{\sqrt{2}} = RT(2 - \sqrt{2}). \] **Answer:** \( RT(2 - \sqrt{2}) \)
Match List - I with List - II.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: