For an adiabatic process, the work done \( W \) is given by:
\[ W = \frac{nR\Delta T}{1-\gamma}. \]
1. **Using the Adiabatic Condition:**
Since the process is adiabatic, \( TV^{\gamma-1} = \text{constant} \). Let the initial temperature be \( T \) and the final temperature be \( T_f \) when the volume is doubled. Thus,
\[ TV^{\gamma-1} = T_f(2V)^{\gamma-1}. \]
2. **Calculate \( T_f \):**
Simplifying, we get:
\[ T_f = T \left(\frac{1}{2}\right)^{\frac{\gamma-1}{\gamma}} = T \left(\frac{1}{2}\right)^{\frac{1}{2}} = \frac{T}{\sqrt{2}}. \]
3. **Calculate the Work Done:**
Substitute into the work formula:
\[ W = \frac{R(T - T_f)}{1 - \frac{3}{2}} = \frac{R \left( T - \frac{T}{\sqrt{2}} \right)}{-\frac{1}{2}}. \] Simplifying further:
\[ W = 2RT\frac{\left(\sqrt{2} - 1\right)}{\sqrt{2}} = RT(2 - \sqrt{2}). \] **Answer:** \( RT(2 - \sqrt{2}) \)
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.