The wire forms a semicircular arc with radius \( R \) and length \( l = 2R \).
Given that the direction of the magnetic field \( \vec{B} \) is in the \( +\hat{k} \) direction.
The magnetic force \( \vec{F} \) is given by:
\[ \vec{F} = i \vec{l} \times \vec{B} \]
Substituting the values:
\[ \vec{F} = -2iRB \hat{j} \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: