



Step 1: Understanding Faraday's Law. According to Faraday's Law of Electromagnetic Induction, the induced emf \( \varepsilon \) in a loop is given by: \[ \varepsilon = \left| \frac{d\Phi_B}{dt} \right|, \] where \( \Phi_B \) is the magnetic flux through the loop.
Step 2: Expressing flux in terms of motion. Since the loop is moving with constant velocity \( v \), the flux linkage \( \Phi_B \) is proportional to the area of the loop inside the magnetic field: \[ \Phi_B = B L x, \] where: - \( B \) is the magnetic field strength, - \( L \) is the width of the loop, - \( x \) is the portion of the loop still inside the field, given by \( x = vt \).
Step 3: Computing emf. Differentiating \( \Phi_B \) with respect to time: \[ \varepsilon = B L \frac{dx}{dt} = B L v. \] Since \( v \) is constant, the emf remains constant while the loop is partially inside the field. However, as the loop starts exiting, the effective area inside the field decreases linearly, causing \( \varepsilon \) to decrease linearly to zero.
Step 4: Identifying the correct graph.
- Since the emf starts at zero, increases linearly while exiting, and reaches a peak before going to zero once the loop is fully out of the field, the correct choice is: \[ \boxed{1} \text{ (Linearly increasing graph)} \]

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.