Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
A particle is subjected to simple harmonic motions as: $ x_1 = \sqrt{7} \sin 5t \, \text{cm} $ $ x_2 = 2 \sqrt{7} \sin \left( 5t + \frac{\pi}{3} \right) \, \text{cm} $ where $ x $ is displacement and $ t $ is time in seconds. The maximum acceleration of the particle is $ x \times 10^{-2} \, \text{m/s}^2 $. The value of $ x $ is:

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: