As per the kinetic theory of gases, the real gas deviates from the ideal gas but they behave the same in some particular temperature and pressure conditions.
A real gas behaves like an ideal gas at low pressure and high temperature.
As per the kinetic theory of gases, there are two main assumptions made explaining the deviation of real gases from ideal gas behavior:
1. Compared to the volume of the vessel, the volume of the gas particle is negligible. But, in the case of a real gas, the volume of every individual gas particle is very significant.
2. There is no interaction between the gaseous particles. However, in a real gas, there are forces of attraction between the molecules.
From the ideal gas equation we know, PV=nRT. Thus, if the pressure of the gas is very high, or the temperature is very low, there is a substantial deviation from the ideal gas equation. Thus, a real gas obtains ideal gas behavior at very low pressure and high temperature.
Also Read: Behavior of Gas Molecules
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
