Step 1: Write the rate expression for the given reaction.
For the reaction 3X(g) $\rightarrow$ 2Y(g) + Z(g), the rate of reaction can be expressed in terms of the rate of disappearance of the reactant and the rate of formation of the products:
$$ \text{Rate} = -\frac{1}{3} \frac{d[X]}{dt} = +\frac{1}{2} \frac{d[Y]}{dt} = +\frac{d[Z]}{dt} $$
where $\frac{d[X]}{dt}$ is the rate of change of concentration of X, $\frac{d[Y]}{dt}$ is the rate of change of concentration of Y, and $\frac{d[Z]}{dt}$ is the rate of change of concentration of Z. The negative sign indicates disappearance of the reactant, and the positive sign indicates formation of the products.
Step 2: Use the given rate of disappearance of X.
We are given that the rate of disappearance of X is $-\frac{d[X]}{dt} = 7.2 \times 10^{-3}$ mol L$^{-1}$ s$^{-1}$.
Step 3: Relate the rate of disappearance of X to the rate of formation of Y.
From the rate expression, we have:
$$ \frac{1}{2} \frac{d[Y]}{dt} = -\frac{1}{3} \frac{d[X]}{dt} $$
We want to find the rate of formation of Y, which is $\frac{d[Y]}{dt}$. Rearranging the equation:
$$ \frac{d[Y]}{dt} = -\frac{2}{3} \frac{d[X]}{dt} $$
Substitute the given value of $-\frac{d[X]}{dt}$:
$$ \frac{d[Y]}{dt} = \frac{2}{3} \times (7.2 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}) $$
$$ \frac{d[Y]}{dt} = \frac{14.4 \times 10^{-3}}{3} \text{ mol L}^{-1} \text{ s}^{-1} $$
$$ \frac{d[Y]}{dt} = 4.8 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1} $$
Final Answer:
\[
\boxed{4.8 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}}
\]