Step 1: Identify given data
The ray of light hits the line \(7x - y + 1 = 0\) at point \( (0,1) \). After reflection, it travels along the line \( y + 2x = 1 \). We need to find the equation of the incident ray's line.
Step 2: Find the slope of the reflecting line
Rewrite \( y + 2x = 1 \) as \( y = -2x + 1 \), so slope \( m_r = -2 \).
Step 3: Find slope of the reflecting surface
Line \(7x - y + 1 = 0 \Rightarrow y = 7x + 1\), slope of surface \( m_s = 7 \).
Step 4: Use reflection law for slopes
Let \( m_i \) be slope of incident ray.
The formula relating slopes for reflection is:
\[
m_r = \frac{2 m_s + m_i - m_s^2 m_i}{1 + 2 m_s m_i - m_s^2}
\]
Or equivalently:
\[
m_r = \frac{2 m_s - m_i (1 - m_s^2)}{1 + 2 m_s m_i - m_s^2}
\]
But the easier formula for reflection is:
\[
\tan \theta_r = \tan(2\alpha - \theta_i)
\]
where \(\alpha = \arctan m_s\), \(\theta_i = \arctan m_i\), \(\theta_r = \arctan m_r\).
Step 5: Calculate angles
\[
\alpha = \arctan(7)
\]
\[
\theta_r = \arctan(-2)
\]
Reflection formula:
\[
\theta_r = 2\alpha - \theta_i \implies \theta_i = 2\alpha - \theta_r
\]
Step 6: Calculate \(\theta_i\)
\[
\theta_i = 2 \arctan(7) - \arctan(-2)
\]
Calculate approximate values:
\(\arctan(7) \approx 81.87^\circ\)
\(\arctan(-2) \approx -63.43^\circ\)
\[
\theta_i \approx 2 \times 81.87^\circ - (-63.43^\circ) = 163.74^\circ + 63.43^\circ = 227.17^\circ
\]
Slope \( m_i = \tan 227.17^\circ \approx \tan (227.17^\circ - 180^\circ) = \tan 47.17^\circ \approx 1.09 \) but since it's in third quadrant, slope is positive.
Step 7: Find equation of incident ray passing through \((0,1)\)
Equation:
\[
y - 1 = m_i (x - 0) \Rightarrow y = 1.09 x + 1
\]
Multiply by 100 for integers:
\[
100 y = 109 x + 100
\]
Rewrite:
\[
109 x - 100 y + 100 = 0
\]
Close to given answer \(41x - 38y + 38 = 0\), so more precise calculation or using formula for reflection of slopes:
Step 8: Use formula for reflected slope
\[
m_i = \frac{2 m_s - m_r (1 - m_s^2)}{1 + 2 m_s m_r - m_s^2}
\]
Substitute:
\[
m_i = \frac{2 \times 7 - (-2)(1 - 7^2)}{1 + 2 \times 7 \times (-2) - 7^2} = \frac{14 + 2(1 - 49)}{1 - 28 - 49} = \frac{14 + 2(-48)}{-76} = \frac{14 - 96}{-76} = \frac{-82}{-76} = \frac{82}{76} = \frac{41}{38}
\]
Step 9: Write incident ray equation
Passing through \((0,1)\) with slope \(\frac{41}{38}\):
\[
y - 1 = \frac{41}{38} x \implies 38y - 38 = 41 x \implies 41x - 38 y + 38 = 0
\]
Final answer:
\[
\boxed{41x - 38 y + 38 = 0}
\]