The remaining amount of a radioactive substance after a given time can be calculated using the formula:
\[
N = N_0 \left( \frac{1}{2} \right)^{\frac{t}{T_{\frac{1}{2}}}}
\]
Where:
- \( N_0 = 200 \, \text{g} \) (initial amount),
- \( t = 30 \, \text{hours} \) (time elapsed),
- \( T_{\frac{1}{2}} = 10 \, \text{hours} \) (half-life).
Substitute the known values:
\[
N = 200 \left( \frac{1}{2} \right)^{\frac{30}{10}} = 200 \left( \frac{1}{2} \right)^{3}
\]
\[
N = 200 \times \frac{1}{8} = 25 \, \text{g}
\]
Thus, after \( 30 \, \text{hours} \), \( 25 \, \text{g} \) of the substance remains.