For a proton to move with a constant velocity without any change, the net force on the particle must be zero. This implies:
\( q\vec{E} + q\vec{v} \times \vec{B} = 0 \)
Possible cases that satisfy this condition are:
Step 1. Case (A): \( \vec{E} = 0 \) and \( \vec{B} = 0 \) — No electric or magnetic fields are present, so no force acts on the proton.
Step 2. Case (B): \( \vec{E} = 0 \) and \( \vec{B} \neq 0 \) — The proton experiences no electric force, and if \( \vec{v} \) and \( \vec{B} \) are parallel, \( \vec{v} \times \vec{B} = 0 \).
Step 3. Case (D): \( \vec{E} \neq 0 \) and \( \vec{B} \neq 0 \) — Here, \( q\vec{E} \) and \( q\vec{v} \times \vec{B} \) can cancel each other out if they are equal in magnitude and opposite in direction.
Thus, the region of space may satisfy cases (A), (B), and (D), so the correct answer is (3).
The wire loop shown in the figure carries a steady current \( I \). Each straight section of the loop has length \( d \). A part of the loop lies in the \( xy \)-plane and the other part is tilted at \( 30^\circ \) with respect to the \( xz \)-plane. The magnitude of the magnetic dipole moment of the loop (in appropriate units) is:
Refer to the circuit diagram given in the figure, which of the following observations are correct?
Observations:
A. Total resistance of circuit is 6 Ω
B. Current in Ammeter is 1 A
C. Potential across AB is 4 Volts
D. Potential across CD is 4 Volts
E. Total resistance of the circuit is 8 Ω
Choose the correct answer from the options given below: