The force on a charged particle moving in a magnetic field is given by:
\[
F = qvB = \frac{mv^2}{r},
\]
where:
- \( q \) is the charge of the proton (\( 1.6 \times 10^{-19} \, \text{C} \)),
- \( v \) is the velocity of the proton (\( 2 \times 10^8 \, \text{m/s} \)),
- \( B \) is the magnetic field,
- \( m \) is the mass of the proton (\( 1.67 \times 10^{-27} \, \text{kg} \)),
- \( r \) is the radius of the circular path (\( 1.6 \times 10^{-5} \, \text{m} \)).
Rearranging the equation for \( B \):
\[
B = \frac{mv}{qr}.
\]
Substitute the values:
\[
B = \frac{(1.67 \times 10^{-27} \, \text{kg}) \times (2 \times 10^8 \, \text{m/s})}{(1.6 \times 10^{-19} \, \text{C}) \times (1.6 \times 10^{-5} \, \text{m})}.
\]
After calculating, we find \( B = 5 \times 10^{-5} \, \text{T} \).
Thus, the correct answer is option (1).