For the same de-Broglie wavelength, \(P = \frac{h}{\lambda}\) is the same for both the proton and the electron. Kinetic energy is given by:
\[ \text{KE} = \frac{P^2}{2m}. \]
Thus:
\[ \frac{\text{KE}_e}{\text{KE}_p} = \frac{m_p}{m_e}. \]
Given:
\[ m_p = 1836 m_e. \]
Substitute:
\[ \frac{\text{KE}_e}{\text{KE}_p} = \frac{1}{1836}. \]
Final Answer: \(1 : 1836\).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: