The radius of the path of a charged particle moving in a magnetic field is given by:
\( r = \frac{mv}{qB} \),
where \( m \) is the mass, \( v \) is the velocity, \( q \) is the charge, and \( B \) is the magnetic field strength.
Since both particles have the same kinetic energy, \( \frac{1}{2}mv^2 = K \), and the velocity \( v \) can be expressed as:
\( v = \sqrt{\frac{2K}{m}} \).
Thus, the radius of the proton path \( r_p \) is:
\( r_p = \frac{m_p \sqrt{2K/m_p}}{eB} \),
and the radius of the deuteron path \( r_d \) is:
\( r_d = \frac{m_d \sqrt{2K/m_d}}{eB} \).
Since \( m_d = 2m_p \), the ratio of the radii is:
\( \frac{r_d}{r_p} = \frac{\sqrt{2m_p}}{\sqrt{m_p}} = \sqrt{2} \).
Thus, the ratio is \( \sqrt{2} : 1 \), and the correct answer is Option (3).
A current-carrying coil is placed in an external uniform magnetic field. The coil is free to turn in the magnetic field. What is the net force acting on the coil? Obtain the orientation of the coil in stable equilibrium. Show that in this orientation the flux of the total field (field produced by the loop + external field) through the coil is maximum.