The de-Broglie wavelength is given by:
\[ \lambda_{DB} = \frac{h}{p} = \frac{h}{\sqrt{2mK}}, \]
where \(m\) is the mass, \(K\) is the kinetic energy, and \(p\) is the momentum. Since the particles have the same energy \(K\), the de-Broglie wavelength becomes:
\[ \lambda_{DB} \propto \frac{1}{\sqrt{m}}. \]
Since \(\lambda_{DB} \propto \frac{1}{\sqrt{m}}\), the lighter the mass, the longer the wavelength:
\[ \lambda_e > \lambda_p > \lambda_\alpha. \]
If \( \lambda \) and \( K \) are de Broglie wavelength and kinetic energy, respectively, of a particle with constant mass. The correct graphical representation for the particle will be: