The de-Broglie wavelength is given by:
\[ \lambda_{DB} = \frac{h}{p} = \frac{h}{\sqrt{2mK}}, \]
where \(m\) is the mass, \(K\) is the kinetic energy, and \(p\) is the momentum. Since the particles have the same energy \(K\), the de-Broglie wavelength becomes:
\[ \lambda_{DB} \propto \frac{1}{\sqrt{m}}. \]
Since \(\lambda_{DB} \propto \frac{1}{\sqrt{m}}\), the lighter the mass, the longer the wavelength:
\[ \lambda_e > \lambda_p > \lambda_\alpha. \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: