Step 1: The time period of a charged particle in a magnetic field is given by the formula:
\[
T = \frac{2\pi m}{q B}
\]
Step 2: Given that the velocity and magnetic field are the same for all particles, the ratio of time periods depends on the ratio \( \frac{m}{q} \).
Step 3: The mass and charge values of the particles:
\[
\text{Proton: } m_p, \quad q_p = e
\]
\[
\text{Deuteron: } m_d = 2m_p, \quad q_d = e
\]
\[
\text{Alpha particle: } m_{\alpha} = 4m_p, \quad q_{\alpha} = 2e
\]
Step 4: Using the formula \( T \propto \frac{m}{q} \):
\[
\frac{T_{\text{proton}}}{T_{\text{deuteron}}} = \frac{m_p/e}{2m_p/e} = \frac{1}{2}
\]
\[
\frac{T_{\text{proton}}}{T_{\alpha}} = \frac{m_p/e}{4m_p/2e} = \frac{1}{4}
\]
Thus, the ratio of time periods is:
\[
1:2:4
\]
\[
\boxed{1:2:4}
\]