Step 1: Use conductivity of intrinsic semiconductor.
Current density:
\[
J = \sigma E
\]
where conductivity:
\[
\sigma = ne(\mu_e+\mu_h)
\]
Step 2: Calculate electric field.
Thickness \(d = 0.5\,mm = 5\times 10^{-4}\,m\).
\[
E = \frac{V}{d} = \frac{2}{5\times 10^{-4}} = 4\times 10^3\,V/m
\]
Step 3: Calculate conductivity.
Given:
\(n = 2\times 10^{19}\,m^{-3}\), \(e = 1.6\times 10^{-19}\,C\).
\[
\mu_e+\mu_h = 0.36+0.14 = 0.50
\]
\[
\sigma = (2\times 10^{19})(1.6\times 10^{-19})(0.5)
= (3.2)(0.5)=1.6\ S/m
\]
Step 4: Find current density.
\[
J = \sigma E = 1.6(4\times 10^3) = 6.4\times 10^3\,A/m^2
\]
Step 5: Find current.
Area \(A = 1\,cm^2 = 10^{-4}\,m^2\).
\[
I = JA = 6.4\times 10^3 \times 10^{-4} = 0.64\,A
\]
Final Answer:
\[
\boxed{0.64\ A}
\]