
For force equilibrium problems:
• Use Coulomb’s law to equate the forces due to charges on opposite sides.
• Solve for the distance r and adjust for the final position based on geometry.
Final Answer: 24 cm
A solid sphere of radius \(4a\) units is placed with its centre at origin. Two charges \(-2q\) at \((-5a, 0)\) and \(5q\) at \((3a, 0)\) is placed. If the flux through the sphere is \(\frac{xq}{\in_0}\) , find \(x\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
