The normal to the plane \( \pi \) must be perpendicular to the given planes \( 2x-3y+z=4 \) and \( 3x+y-z=5 \). To find the normal vector \( \vec{N} \) of \( \pi \), we take the cross product of their normal vectors:
\[
\vec{N} = (2,-3,1) \times (3,1,-1)
\]
Using determinant expansion:
\[
\vec{i} \begin{vmatrix} -3 & 1
1 & -1 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & 1
1 & -1 \end{vmatrix} + \vec{k} \begin{vmatrix} 2 & -3
3 & 1 \end{vmatrix}
\]
Calculating each determinant:
\[
\vec{i} (-3 \times (-1) - 1 \times 1) = \vec{i} (3 - 1) = 2\vec{i}
\]
\[
- \vec{j} (2 \times (-1) - 1 \times 1) = - \vec{j} (-2 - 1) = 3\vec{j}
\]
\[
+ \vec{k} (2 \times 1 - (-3) \times 3) = \vec{k} (2 + 9) = 11\vec{k}
\]
Thus, the normal vector \( \vec{N} = (2,3,11) \), meaning \( a = 2 \), \( b = 3 \), and \( 11 \) as the coefficient of \( z \).
The perpendicular distance from the origin to the plane \( \pi \) is given by:
\[
d_{\text{origin}} = \frac{|d|}{\sqrt{a^2 + b^2 + c^2}}
\]
\[
\sqrt{6} = \frac{|d|}{\sqrt{2^2 + 3^2 + 11^2}}
\]
\[
\sqrt{6} = \frac{|d|}{\sqrt{4 + 9 + 121}}
\]
\[
\sqrt{6} = \frac{|d|}{\sqrt{134}}
\]
Solving for \( d \):
\[
|d| = \sqrt{6} \times \sqrt{134}
\]
\[
|d| = \sqrt{6 \times 134} = \sqrt{804}
\]
Since all intercepts are positive, \( d = 4ab = 4 \times 2 \times 3 = 24 \).
Thus, the correct answer is \( 4ab \).