Step 1: Understanding the Concept:
The equation of a plane containing the intersection of two planes is given by \(P_1 + \lambda P_2 = 0\). We find \(\lambda\) by applying the condition that the normal to this plane is perpendicular to the normal of the given third plane.
Step 2: Key Formula or Approach:
1. Family of planes: \((x+2y+3z+1) + \lambda(x-y-z-6) = 0\).
2. Normal \(\vec{n_P} = (1+\lambda, 2-\lambda, 3-\lambda)\).
3. Perpendicularity: \(\vec{n_P} \cdot \vec{n_3} = 0\).
Step 3: Detailed Explanation:
Given \(\vec{n_3} = (-2, 1, 1)\).
\[ (1+\lambda)(-2) + (2-\lambda)(1) + (3-\lambda)(1) = 0 \]
\[ -2 - 2\lambda + 2 - \lambda + 3 - \lambda = 0 \implies 3 - 4\lambda = 0 \implies \lambda = 3/4 \]
The equation of plane \(P\) is:
\[ (x + 2y + 3z + 1) + \frac{3}{4}(x - y - z - 6) = 0 \]
\[ 4x + 8y + 12z + 4 + 3x - 3y - 3z - 18 = 0 \implies 7x + 5y + 9z - 14 = 0 \]
Now check the options:
(A) \(7(2) + 5(-1) + 9(1) - 14 = 14 - 5 + 9 - 14 = 4 \neq 0\).
(B) \(7(0) + 5(1) + 9(1) - 14 = 5 + 9 - 14 = 0\). (Lies on \(P\))
(C) \(7(1) + 0 + 9(1) - 14 = 2 \neq 0\).
(D) \(7(-1) + 5(1) + 9(2) - 14 = -7 + 5 + 18 - 14 = 2 \neq 0\).
Step 4: Final Answer:
The point \((0, 1, 1)\) lies on the plane.