Let the plane intersect the X, Y, Z axes at points A, B, C respectively.
Let A = \((a,0,0)\), B = \((0,b,0)\), C = \((0,0,c)\). These are the x, y, z intercepts.
The equation of the plane in intercept form is \( \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \).
The centroid of \(\triangle ABC\) has coordinates:
\(G = \left( \frac{a+0+0}{3}, \frac{0+b+0}{3}, \frac{0+0+c}{3} \right) = \left( \frac{a}{3}, \frac{b}{3}, \frac{c}{3} \right)\).
Given that the centroid is \((2, -3, 5)\).
So, \(\frac{a}{3} = 2 \Rightarrow a = 6\).
\(\frac{b}{3} = -3 \Rightarrow b = -9\).
\(\frac{c}{3} = 5 \Rightarrow c = 15\).
The equation of the plane is \( \frac{x}{6} + \frac{y}{-9} + \frac{z}{15} = 1 \).
To find the perpendicular distance from the origin (0,0,0) to this plane, we can convert the equation to the form \(Ax+By+Cz+D=0\).
Multiply by the LCM of 6, 9, 15.
LCM(6,9,15): \(6=2 \cdot 3\), \(9=3^2\), \(15=3 \cdot 5\). LCM = \(2 \cdot 3^2 \cdot 5 = 2 \cdot 9 \cdot 5 = 90\).
Multiply by 90:
\( \frac{90x}{6} + \frac{90y}{-9} + \frac{90z}{15} = 90 \)
\( 15x - 10y + 6z = 90 \)
\( 15x - 10y + 6z - 90 = 0 \).
The perpendicular distance \(d\) from a point \((x_0, y_0, z_0)\) to the plane \(Ax+By+Cz+D=0\) is given by:
\[ d = \frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} \]
Here, the point is origin \((0,0,0)\), and the plane is \(15x - 10y + 6z - 90 = 0\).
So, \(A=15, B=-10, C=6, D=-90\).
\[ d = \frac{|15(0) - 10(0) + 6(0) - 90|}{\sqrt{15^2+(-10)^2+6^2}} = \frac{|-90|}{\sqrt{225+100+36}} \]
\[ d = \frac{90}{\sqrt{361}} \]
We need to find \(\sqrt{361}\).
\(10^2=100, 20^2=400\). So it's between 10 and 20.
Numbers ending in 1 when squared end in 1 (e.g., 1, 9).
Try \(19^2 = (20-1)^2 = 400 - 40 + 1 = 361\). So \(\sqrt{361}=19\).
\[ d = \frac{90}{19} \]
This matches option (d).
\[ \boxed{\frac{90}{19}} \]