The intensity \(I\) of an electromagnetic wave is given by:
\[ I = \frac{1}{2} \epsilon_0 c E_0^2 \]
where \(\epsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2/\text{N m}^2\), \(c = 3 \times 10^8 \, \text{m/s}\), and \(E_0 = 200 \, \text{V/m}\).
Substituting the values:
\[ I = \frac{1}{2} \times 8.85 \times 10^{-12} \times (3 \times 10^8) \times (200)^2 \] \[ I = 53.1 \, \text{W/m}^2 \]
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: