The intensity \(I\) of an electromagnetic wave is given by:
\[ I = \frac{1}{2} \epsilon_0 c E_0^2 \]
where \(\epsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2/\text{N m}^2\), \(c = 3 \times 10^8 \, \text{m/s}\), and \(E_0 = 200 \, \text{V/m}\).
Substituting the values:
\[ I = \frac{1}{2} \times 8.85 \times 10^{-12} \times (3 \times 10^8) \times (200)^2 \] \[ I = 53.1 \, \text{W/m}^2 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: