For an electromagnetic wave, the electric field \( \vec{E} \) and magnetic field \( \vec{B} \) are related by the speed of light \( c \):
\(\frac{E}{B} = c\)
where \( c = 3 \times 10^8 \, \text{m/s} \).
Step 1: Calculate the magnetic field \( B \):
Given \( E = 9.6 \, \text{V/m} \),
\(B = \frac{E}{c} = \frac{9.6}{3 \times 10^8} = 3.2 \times 10^{-8} \, \text{T}\)
Step 2: Determine the direction of \( \vec{B} \):
Since the wave travels along the X-direction and \( \vec{E} \) is along \( \hat{j} \), the magnetic field \( \vec{B} \) must be perpendicular to both the direction of propagation and \( \vec{E} \). By the right-hand rule:
\(\vec{B} \, \text{points along} \, \hat{k}.\)
Thus, the magnetic field at this point is \( 3.2 \times 10^{-8} \hat{k} \, \text{T}. \)
The Correct Answer is: \( 3.2 \times 10^{-8} \hat{k} \, \text{T}. \)
List-I | List-II |
---|---|
(A) A force that restores an elastic body of unit area to its original state | (I) Bulk modulus |
(B) Two equal and opposite forces parallel to opposite faces | (IV) Shear modulus |
(C) Forces perpendicular everywhere to the surface per unit area same everywhere | (III) Stress |
(D) Two equal and opposite forces perpendicular to opposite faces | (II) Young's modulus |
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: