i. The refractive index of the medium
Step 1: The given equation of the wave is:
\[
E = 100 \cos(6 \times 10^8 t + 4x)
\]
Step 2: Comparing with the general wave equation \( E = E_0 \cos(\omega t + kx) \), we get:
\[
\omega = 6 \times 10^8, \quad k = 4
\]
Step 3: Using the relation \( v = \frac{\omega}{k} \):
\[
v = \frac{6 \times 10^8}{4} = 1.5 \times 10^8 \, \text{m/s}
\]
Step 4: The refractive index is:
\[
n = \frac{c}{v} = \frac{3 \times 10^8}{1.5 \times 10^8} = 2
\]
\[
\boxed{n = 2}
\]
ii. The velocity of electromagnetic wave in the medium
Step 1: From the previous step, we obtained the velocity as:
\[
v = \frac{\omega}{k} = 1.5 \times 10^8 \, \text{m/s}
\]
\[
\boxed{v = 1.5 \times 10^8 \, \text{m/s}}
\]
iii. The expression for magnetic field
Step 1: In an electromagnetic wave, the magnetic field \( B \) is related to the electric field \( E \) by:
\[
B = \frac{E}{c}
\]
Step 2: Substituting the given electric field expression:
\[
B = \frac{100}{3 \times 10^8} \cos(6 \times 10^8 t + 4x)
\]
\[
B = \frac{E_0}{c} \cos(6 \times 10^8 t + 4x)
\]
\[
\boxed{B = \frac{E_0}{c} \cos(6 \times 10^8 t + 4x)}
\]