The cutoff frequency \(f_{c,mn}\) for TE\(_{mn}\) or TM\(_{mn}\) modes in a rectangular waveguide with dimensions \(a\) (width) and \(b\) (height) is given by:
\[ f_{c,mn} = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} \]
where \(c\) is the speed of light, \(m\) and \(n\) are mode indices (integers).
For TE modes, \(m, n\) can be 0, 1, 2, ... but not both \(m=0\) and \(n=0\) simultaneously.
For TM modes, \(m, n\) must be 1, 2, 3, ... (neither \(m\) nor \(n\) can be zero).
Given: \(a=2b\).
Cutoff frequency for TE\(_{01}\) mode is 12 GHz.
For TE\(_{01}\) mode, \(m=0, n=1\).
\[ f_{c,01} = \frac{c}{2} \sqrt{\left(\frac{0}{a}\right)^2 + \left(\frac{1}{b}\right)^2} = \frac{c}{2} \sqrt{\frac{1}{b^2}} = \frac{c}{2b} \]
We are given \(f_{c,01} = 12\) GHz.
So, \(\frac{c}{2b} = 12 \text{ GHz}\). This gives us a relation for \(c/b\): \(c/b = 24 \text{ GHz}\).
Now, we need to find the cutoff frequency for TM\(_{11}\) mode.
For TM\(_{11}\) mode, \(m=1, n=1\).
\[ f_{c,11} = \frac{c}{2} \sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{b}\right)^2} \]
Substitute \(a=2b\):
\[ f_{c,11} = \frac{c}{2} \sqrt{\left(\frac{1}{2b}\right)^2 + \left(\frac{1}{b}\right)^2} = \frac{c}{2} \sqrt{\frac{1}{4b^2} + \frac{1}{b^2}} \]
\[ f_{c,11} = \frac{c}{2} \sqrt{\frac{1+4}{4b^2}} = \frac{c}{2} \sqrt{\frac{5}{4b^2}} = \frac{c}{2} \frac{\sqrt{5}}{2b} = \frac{c\sqrt{5}}{4b} \]
We can write this as \(f_{c,11} = \left(\frac{c}{2b}\right) \frac{\sqrt{5}}{2}\).
We know \(\frac{c}{2b} = 12 \text{ GHz}\).
So, \[ f_{c,11} = (12 \text{ GHz}) \frac{\sqrt{5}}{2} = 6\sqrt{5} \text{ GHz} \]
This matches option (b).
\[ \boxed{6\sqrt{5} \text{ GHz}} \]