Step 1: Given Information
The physical quantity \( \vec{S} \) is defined as:
\[
\vec{S} = \frac{(\vec{E} \times \vec{B})}{\mu_0}
\]
where:
- \( \vec{E} \) is the electric field,
- \( \vec{B} \) is the magnetic field,
- \( \mu_0 \) is the permeability of free space.
We are asked to determine the dimensions of \( \vec{S} \) and match them with the dimensions of one of the given quantities.
Step 2: Determining the Dimensions of \( \vec{S} \)
The dimensions of \( \vec{S} \) depend on the cross product of the electric field \( \vec{E} \) and the magnetic field \( \vec{B} \), and the permeability of free space \( \mu_0 \). We start by analyzing the dimensions of each term:
- The dimensions of the electric field \( \vec{E} \) are given by:
\[
[E] = \frac{M L^2}{T^3 A}
\]
where \( M \) is mass, \( L \) is length, \( T \) is time, and \( A \) is the electric current.
- The dimensions of the magnetic field \( \vec{B} \) are:
\[
[B] = \frac{M}{T^2 A}
\]
- The permeability of free space \( \mu_0 \) has the dimensions:
\[
[\mu_0] = \frac{M}{A^2 T^2}
\]
Now, the cross product \( \vec{E} \times \vec{B} \) results in the dimensions:
\[
[\vec{E} \times \vec{B}] = \left[\frac{M L^2}{T^3 A} \times \frac{M}{T^2 A}\right] = \frac{M^2 L^2}{T^5 A^2}
\]
Dividing by \( \mu_0 \), we get the dimensions of \( \vec{S} \):
\[
[\vec{S}] = \frac{\frac{M^2 L^2}{T^5 A^2}}{\frac{M}{A^2 T^2}} = \frac{M L^2}{T^3 A}
\]
Step 3: Matching the Dimensions
Now, we compare the dimensions of \( \vec{S} \) with the given options. We are asked to find the quantity that has the same dimensions as \( \vec{S} \). The options are:
- (B) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
- (D) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
The dimensions of force \( F \) are:
\[
[F] = \frac{M L}{T^2}
\]
Therefore, the dimensions of \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \) are:
\[
\left[\frac{F}{L T}\right] = \frac{M L}{T^2} \times \frac{1}{L T} = \frac{M}{T^3 A}
\]
This matches the dimensions of \( \vec{S} \). Therefore, both options (B) and (D) are correct.
Final Answer:
The correct options are:
- (B) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
- (D) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?