Step 1: Given Information
The physical quantity \( \vec{S} \) is defined as:
\[
\vec{S} = \frac{(\vec{E} \times \vec{B})}{\mu_0}
\]
where:
- \( \vec{E} \) is the electric field,
- \( \vec{B} \) is the magnetic field,
- \( \mu_0 \) is the permeability of free space.
We are asked to determine the dimensions of \( \vec{S} \) and match them with the dimensions of one of the given quantities.
Step 2: Determining the Dimensions of \( \vec{S} \)
The dimensions of \( \vec{S} \) depend on the cross product of the electric field \( \vec{E} \) and the magnetic field \( \vec{B} \), and the permeability of free space \( \mu_0 \). We start by analyzing the dimensions of each term:
- The dimensions of the electric field \( \vec{E} \) are given by:
\[
[E] = \frac{M L^2}{T^3 A}
\]
where \( M \) is mass, \( L \) is length, \( T \) is time, and \( A \) is the electric current.
- The dimensions of the magnetic field \( \vec{B} \) are:
\[
[B] = \frac{M}{T^2 A}
\]
- The permeability of free space \( \mu_0 \) has the dimensions:
\[
[\mu_0] = \frac{M}{A^2 T^2}
\]
Now, the cross product \( \vec{E} \times \vec{B} \) results in the dimensions:
\[
[\vec{E} \times \vec{B}] = \left[\frac{M L^2}{T^3 A} \times \frac{M}{T^2 A}\right] = \frac{M^2 L^2}{T^5 A^2}
\]
Dividing by \( \mu_0 \), we get the dimensions of \( \vec{S} \):
\[
[\vec{S}] = \frac{\frac{M^2 L^2}{T^5 A^2}}{\frac{M}{A^2 T^2}} = \frac{M L^2}{T^3 A}
\]
Step 3: Matching the Dimensions
Now, we compare the dimensions of \( \vec{S} \) with the given options. We are asked to find the quantity that has the same dimensions as \( \vec{S} \). The options are:
- (B) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
- (D) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
The dimensions of force \( F \) are:
\[
[F] = \frac{M L}{T^2}
\]
Therefore, the dimensions of \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \) are:
\[
\left[\frac{F}{L T}\right] = \frac{M L}{T^2} \times \frac{1}{L T} = \frac{M}{T^3 A}
\]
This matches the dimensions of \( \vec{S} \). Therefore, both options (B) and (D) are correct.
Final Answer:
The correct options are:
- (B) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
- (D) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.