Step 1: Given Information
The physical quantity \( \vec{S} \) is defined as:
\[
\vec{S} = \frac{(\vec{E} \times \vec{B})}{\mu_0}
\]
where:
- \( \vec{E} \) is the electric field,
- \( \vec{B} \) is the magnetic field,
- \( \mu_0 \) is the permeability of free space.
We are asked to determine the dimensions of \( \vec{S} \) and match them with the dimensions of one of the given quantities.
Step 2: Determining the Dimensions of \( \vec{S} \)
The dimensions of \( \vec{S} \) depend on the cross product of the electric field \( \vec{E} \) and the magnetic field \( \vec{B} \), and the permeability of free space \( \mu_0 \). We start by analyzing the dimensions of each term:
- The dimensions of the electric field \( \vec{E} \) are given by:
\[
[E] = \frac{M L^2}{T^3 A}
\]
where \( M \) is mass, \( L \) is length, \( T \) is time, and \( A \) is the electric current.
- The dimensions of the magnetic field \( \vec{B} \) are:
\[
[B] = \frac{M}{T^2 A}
\]
- The permeability of free space \( \mu_0 \) has the dimensions:
\[
[\mu_0] = \frac{M}{A^2 T^2}
\]
Now, the cross product \( \vec{E} \times \vec{B} \) results in the dimensions:
\[
[\vec{E} \times \vec{B}] = \left[\frac{M L^2}{T^3 A} \times \frac{M}{T^2 A}\right] = \frac{M^2 L^2}{T^5 A^2}
\]
Dividing by \( \mu_0 \), we get the dimensions of \( \vec{S} \):
\[
[\vec{S}] = \frac{\frac{M^2 L^2}{T^5 A^2}}{\frac{M}{A^2 T^2}} = \frac{M L^2}{T^3 A}
\]
Step 3: Matching the Dimensions
Now, we compare the dimensions of \( \vec{S} \) with the given options. We are asked to find the quantity that has the same dimensions as \( \vec{S} \). The options are:
- (B) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
- (D) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
The dimensions of force \( F \) are:
\[
[F] = \frac{M L}{T^2}
\]
Therefore, the dimensions of \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \) are:
\[
\left[\frac{F}{L T}\right] = \frac{M L}{T^2} \times \frac{1}{L T} = \frac{M}{T^3 A}
\]
This matches the dimensions of \( \vec{S} \). Therefore, both options (B) and (D) are correct.
Final Answer:
The correct options are:
- (B) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
- (D) \( \frac{\text{Force}}{\text{Length} \times \text{Time}} \)
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.