Given initial velocity \( u_x = 5 \, \text{m/s} \), acceleration \( a_x = 3 \, \text{m/s}^2 \), and \( x = 84 \, \text{m} \).
Using the equation:
\[ v_x^2 = u_x^2 + 2a_xx \]
\[ v_x^2 = 5^2 + 2 \cdot 3 \cdot 84 = 25 + 504 = 529 \]
\[ v_x = 23 \, \text{m/s} \]
Similarly, for the y-direction:
\[ v_y = u_y + a_y t = 0 + 2 \cdot t \]
Using \( v_x = u_x + a_x t \):
\[ t = \frac{v_x - u_x}{a_x} = \frac{23 - 5}{3} = 6 \, \text{s} \]
Then,
\[ v_y = 2 \times 6 = 12 \, \text{m/s} \]
The speed of the particle is:
\[ v = \sqrt{v_x^2 + v_y^2} = \sqrt{23^2 + 12^2} = \sqrt{529 + 144} = \sqrt{673} \]
Thus, \(\alpha = 673\).
\( u_x = 5 \, \text{m/s}, \quad a_x = 3 \, \text{m/s}^2, \quad x = 84 \, \text{m} \)
\[ v_x^2 - u_x^2 = 2a_x x \] \[ v_x^2 - 25 = 2(3)(84) \] \[ v_x^2 = 25 + 504 = 529 \] \[ v_x = 23 \, \text{m/s} \]
\[ v_x - u_x = a_x t \] \[ t = \frac{23 - 5}{3} = 6 \, \text{s} \]
\[ v_y = 0 + a_y t = 0 + 2 \times 6 = 12 \, \text{m/s} \]
\[ v = \sqrt{v_x^2 + v_y^2} \] \[ v = \sqrt{23^2 + 12^2} = \sqrt{673} \, \text{m/s} \]
\[ \boxed{v = \sqrt{673} \, \text{m/s}} \]
A bead P sliding on a frictionless semi-circular string... bead Q ejected... relation between $t_P$ and $t_Q$ is 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 