Given initial velocity \( u_x = 5 \, \text{m/s} \), acceleration \( a_x = 3 \, \text{m/s}^2 \), and \( x = 84 \, \text{m} \).
Using the equation:
\[ v_x^2 = u_x^2 + 2a_xx \]
\[ v_x^2 = 5^2 + 2 \cdot 3 \cdot 84 = 25 + 504 = 529 \]
\[ v_x = 23 \, \text{m/s} \]
Similarly, for the y-direction:
\[ v_y = u_y + a_y t = 0 + 2 \cdot t \]
Using \( v_x = u_x + a_x t \):
\[ t = \frac{v_x - u_x}{a_x} = \frac{23 - 5}{3} = 6 \, \text{s} \]
Then,
\[ v_y = 2 \times 6 = 12 \, \text{m/s} \]
The speed of the particle is:
\[ v = \sqrt{v_x^2 + v_y^2} = \sqrt{23^2 + 12^2} = \sqrt{529 + 144} = \sqrt{673} \]
Thus, \(\alpha = 673\).