To solve the problem, we analyze the motion of a particle of mass \(m\) moving in a circular orbit under a central force \(f(r) = -kr\), with potential energy \(V(r) = \frac{kr^2}{2}\). Using Bohr's quantization rule \(L = n\hbar\), we find expressions for \(r^2\), \(v^2\), \(\frac{L}{mr^2}\), and \(E\).
1. Relation Between Force and Circular Motion:
For circular motion of radius \(r\), the centripetal force is provided by the restoring force:
\[
\frac{mv^2}{r} = kr
\]
which gives:
\[
v^2 = \frac{kr^2}{m}
\]
2. Angular Momentum Quantization:
The angular momentum \(L\) is:
\[
L = mvr = n\hbar
\]
Using \(v = \frac{L}{mr}\), substitute \(v\) in the centripetal force equation:
\[
\frac{m}{r} \left(\frac{L}{mr}\right)^2 = kr \implies \frac{L^2}{m r^3} = k r \implies L^2 = m k r^4
\]
Rearranging:
\[
r^4 = \frac{L^2}{m k}
\]
Substitute \(L = n \hbar\):
\[
r^4 = \frac{n^2 \hbar^2}{m k}
\]
Taking square root:
\[
r^2 = n \hbar \sqrt{\frac{1}{m k}}
\]
This confirms the first expression is correct.
3. Expression for \(v^2\):
Using \(v = \frac{L}{mr}\) and the expression for \(r^2\):
\[
v^2 = \left(\frac{L}{mr}\right)^2 = \frac{L^2}{m^2 r^2}
\]
Substitute \(L = n \hbar\) and \(r^2 = n \hbar \sqrt{\frac{1}{m k}}\):
\[
v^2 = \frac{n^2 \hbar^2}{m^2 \cdot n \hbar \sqrt{\frac{1}{m k}}} = \frac{n \hbar}{m^2} \sqrt{m k} = n \hbar \sqrt{\frac{k}{m^3}}
\]
This confirms the second expression is correct.
4. Expression for \(\frac{L}{m r^2}\):
\[
\frac{L}{m r^2} = \frac{n \hbar}{m r^2}
\]
Substitute \(r^2 = n \hbar \sqrt{\frac{1}{m k}}\):
\[
\frac{L}{m r^2} = \frac{n \hbar}{m \cdot n \hbar \sqrt{\frac{1}{m k}}} = \frac{1}{m \sqrt{\frac{1}{m k}}} = \sqrt{\frac{k}{m}}
\]
This confirms the third expression is correct.
5. Expression for Total Energy \(E\):
The total energy is kinetic plus potential energy:
\[
E = \frac{1}{2} m v^2 + \frac{1}{2} k r^2
\]
Using \(v^2 = \frac{k r^2}{m}\), we have:
\[
E = \frac{1}{2} m \frac{k r^2}{m} + \frac{1}{2} k r^2 = k r^2
\]
Substitute \(r^2 = n \hbar \sqrt{\frac{1}{m k}}\):
\[
E = k \cdot n \hbar \sqrt{\frac{1}{m k}} = n \hbar \sqrt{\frac{k}{m}}
\]
The expression given is \(\frac{n h}{2} \sqrt{\frac{k}{m}}\). Note that \(\hbar = \frac{h}{2\pi}\), so:
\[
E = n \hbar \sqrt{\frac{k}{m}} = n \frac{h}{2\pi} \sqrt{\frac{k}{m}} \neq \frac{n h}{2} \sqrt{\frac{k}{m}}
\]
So the fourth expression is not correct.
Final Answer:
The correct expressions are:
\[
r^2 = n \hbar \sqrt{\frac{1}{m k}}, \quad v^2 = n \hbar \sqrt{\frac{k}{m^3}}, \quad \frac{L}{m r^2} = \sqrt{\frac{k}{m}}
\]
The expression for energy \(E = \frac{n h}{2} \sqrt{\frac{k}{m}}\) is incorrect.
The Bohr quantization rule states that the angular momentum is quantized: \(L = n\hbar = n\frac{h}{2\pi}\)
Since \(L = mvr\), we have \(mvr = n\hbar\)
The force is \(F = -kr\), which means the centripetal force is \(kr = \frac{mv^2}{r}\), so \(kr^2 = mv^2\).
Then \(v = \sqrt{\frac{k}{m}} r\)
Substituting into the angular momentum equation, \(mr \sqrt{\frac{k}{m}} r = n\hbar\)
\(r^2 \sqrt{mk} = n\hbar\)
\(r^2 = n\hbar \sqrt{\frac{1}{mk}}\), which is answer (A).
\(v = \frac{n\hbar}{mr} = \frac{n\hbar}{m \sqrt{n\hbar} (mk)^{-1/4}} = \frac{n\hbar}{m(n\hbar)^{1/2}m^{-1/4}k^{-1/4}} = \sqrt{\frac{n\hbar \sqrt{k}}{m^{3/2}}} = \sqrt{n \hbar}\sqrt{\frac{\sqrt{k}}{\sqrt{m^3}}} = \sqrt{n \hbar \sqrt{\frac{k}{m^3}}}\) \(v^2 = n \hbar \sqrt{\frac{k}{m^3}}\), which is answer (B)
\(\frac{L}{mr^2} = \frac{n \hbar}{m (n\hbar \sqrt{\frac{1}{mk}})} = \frac{\hbar}{\sqrt{\frac{n^2\hbar^2}{mk}}m} = \sqrt{\frac{mk}{n^2 \hbar^2 m^2}} = \sqrt{\frac{k}{m}} \frac{1}{m \sqrt{r^2}}=\sqrt{\frac{k}{m}}\) \(\frac{L}{mr^2} = \sqrt{\frac{k}{m}}\) , which is answer (C)
The total energy is \(E = T + V = \frac{1}{2}mv^2 + \frac{1}{2}kr^2 = \frac{1}{2}(kr^2) + \frac{1}{2}(kr^2) = kr^2\)
Since \(r^2 = n\hbar \sqrt{\frac{1}{mk}}\), we have \(E = k(n\hbar \sqrt{\frac{1}{mk}}) = n\hbar \sqrt{\frac{k^2}{mk}} = n\hbar \sqrt{\frac{k}{m}}\), which doesn’t correspond to the options given in (D).
Answer: (A, B, C)
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.