The given potential energy function is:
\[ V(r) = \frac{k r^2}{2}. \]
The force is obtained as:
\[ F = -\frac{dV}{dr} = -kr. \]
For circular motion, the **centripetal force** is provided by the central force:
\[ \frac{m v^2}{r} = kr \Rightarrow m v^2 = k r^2. \]
(Equation 1)
Using **Bohr’s quantization rule**, \( L = n\hbar \):
\[ L = m v r = n \hbar \Rightarrow v = \frac{n\hbar}{m r}. \]
(Equation 2)
Substituting \( v \) from Equation (2) into Equation (1):
\[ m \cdot \frac{n\hbar}{m r} \cdot \frac{n\hbar}{m r} = k r^2. \]
Rearranging:
\[ \frac{n^2 \hbar^2}{m r^2} = k r^2. \]
Solving for \( r \):
\[ r^4 = \frac{n^2 \hbar^2}{m k} \Rightarrow r^2 = \frac{n\hbar}{\sqrt{m k}}. \]
**(A) is correct.** ✅
From \( v = \frac{n\hbar}{m r} \), squaring both sides:
\[ v^2 = \frac{n\hbar}{m r} \cdot \frac{k r}{m} = \frac{n\hbar k}{m^3 r}. \]
**(B) is correct.** ✅
\[ \frac{L}{m r^2} = \frac{n\hbar}{m r^2}. \]
Using \( r^2 = \frac{n\hbar}{\sqrt{m k}} \):
\[ \frac{L}{m r^2} = \frac{\sqrt{k}}{\sqrt{m}}. \]
**(C) is correct.** ✅
The total energy is the sum of kinetic and potential energy:
\[ E = K + U = \frac{1}{2} m v^2 + \frac{1}{2} k r^2. \]
Substituting \( v^2 \) and \( r^2 \):
\[ E = \frac{1}{2} \cdot \frac{k r^2}{m} + \frac{1}{2} k r^2. \]
Simplifying:
\[ E = \frac{n\hbar}{\sqrt{m k}} k. \]
Since this does not match the expected total energy formula, **(D) is not correct.** ❌