To solve the problem, we analyze the motion of a particle of mass \(m\) moving in a circular orbit under a central force \(f(r) = -kr\), with potential energy \(V(r) = \frac{kr^2}{2}\). Using Bohr's quantization rule \(L = n\hbar\), we find expressions for \(r^2\), \(v^2\), \(\frac{L}{mr^2}\), and \(E\).
1. Relation Between Force and Circular Motion:
For circular motion of radius \(r\), the centripetal force is provided by the restoring force:
\[
\frac{mv^2}{r} = kr
\]
which gives:
\[
v^2 = \frac{kr^2}{m}
\]
2. Angular Momentum Quantization:
The angular momentum \(L\) is:
\[
L = mvr = n\hbar
\]
Using \(v = \frac{L}{mr}\), substitute \(v\) in the centripetal force equation:
\[
\frac{m}{r} \left(\frac{L}{mr}\right)^2 = kr \implies \frac{L^2}{m r^3} = k r \implies L^2 = m k r^4
\]
Rearranging:
\[
r^4 = \frac{L^2}{m k}
\]
Substitute \(L = n \hbar\):
\[
r^4 = \frac{n^2 \hbar^2}{m k}
\]
Taking square root:
\[
r^2 = n \hbar \sqrt{\frac{1}{m k}}
\]
This confirms the first expression is correct.
3. Expression for \(v^2\):
Using \(v = \frac{L}{mr}\) and the expression for \(r^2\):
\[
v^2 = \left(\frac{L}{mr}\right)^2 = \frac{L^2}{m^2 r^2}
\]
Substitute \(L = n \hbar\) and \(r^2 = n \hbar \sqrt{\frac{1}{m k}}\):
\[
v^2 = \frac{n^2 \hbar^2}{m^2 \cdot n \hbar \sqrt{\frac{1}{m k}}} = \frac{n \hbar}{m^2} \sqrt{m k} = n \hbar \sqrt{\frac{k}{m^3}}
\]
This confirms the second expression is correct.
4. Expression for \(\frac{L}{m r^2}\):
\[
\frac{L}{m r^2} = \frac{n \hbar}{m r^2}
\]
Substitute \(r^2 = n \hbar \sqrt{\frac{1}{m k}}\):
\[
\frac{L}{m r^2} = \frac{n \hbar}{m \cdot n \hbar \sqrt{\frac{1}{m k}}} = \frac{1}{m \sqrt{\frac{1}{m k}}} = \sqrt{\frac{k}{m}}
\]
This confirms the third expression is correct.
5. Expression for Total Energy \(E\):
The total energy is kinetic plus potential energy:
\[
E = \frac{1}{2} m v^2 + \frac{1}{2} k r^2
\]
Using \(v^2 = \frac{k r^2}{m}\), we have:
\[
E = \frac{1}{2} m \frac{k r^2}{m} + \frac{1}{2} k r^2 = k r^2
\]
Substitute \(r^2 = n \hbar \sqrt{\frac{1}{m k}}\):
\[
E = k \cdot n \hbar \sqrt{\frac{1}{m k}} = n \hbar \sqrt{\frac{k}{m}}
\]
The expression given is \(\frac{n h}{2} \sqrt{\frac{k}{m}}\). Note that \(\hbar = \frac{h}{2\pi}\), so:
\[
E = n \hbar \sqrt{\frac{k}{m}} = n \frac{h}{2\pi} \sqrt{\frac{k}{m}} \neq \frac{n h}{2} \sqrt{\frac{k}{m}}
\]
So the fourth expression is not correct.
Final Answer:
The correct expressions are:
\[
r^2 = n \hbar \sqrt{\frac{1}{m k}}, \quad v^2 = n \hbar \sqrt{\frac{k}{m^3}}, \quad \frac{L}{m r^2} = \sqrt{\frac{k}{m}}
\]
The expression for energy \(E = \frac{n h}{2} \sqrt{\frac{k}{m}}\) is incorrect.
The Bohr quantization rule states that the angular momentum is quantized: \(L = n\hbar = n\frac{h}{2\pi}\)
Since \(L = mvr\), we have \(mvr = n\hbar\)
The force is \(F = -kr\), which means the centripetal force is \(kr = \frac{mv^2}{r}\), so \(kr^2 = mv^2\).
Then \(v = \sqrt{\frac{k}{m}} r\)
Substituting into the angular momentum equation, \(mr \sqrt{\frac{k}{m}} r = n\hbar\)
\(r^2 \sqrt{mk} = n\hbar\)
\(r^2 = n\hbar \sqrt{\frac{1}{mk}}\), which is answer (A).
\(v = \frac{n\hbar}{mr} = \frac{n\hbar}{m \sqrt{n\hbar} (mk)^{-1/4}} = \frac{n\hbar}{m(n\hbar)^{1/2}m^{-1/4}k^{-1/4}} = \sqrt{\frac{n\hbar \sqrt{k}}{m^{3/2}}} = \sqrt{n \hbar}\sqrt{\frac{\sqrt{k}}{\sqrt{m^3}}} = \sqrt{n \hbar \sqrt{\frac{k}{m^3}}}\) \(v^2 = n \hbar \sqrt{\frac{k}{m^3}}\), which is answer (B)
\(\frac{L}{mr^2} = \frac{n \hbar}{m (n\hbar \sqrt{\frac{1}{mk}})} = \frac{\hbar}{\sqrt{\frac{n^2\hbar^2}{mk}}m} = \sqrt{\frac{mk}{n^2 \hbar^2 m^2}} = \sqrt{\frac{k}{m}} \frac{1}{m \sqrt{r^2}}=\sqrt{\frac{k}{m}}\) \(\frac{L}{mr^2} = \sqrt{\frac{k}{m}}\) , which is answer (C)
The total energy is \(E = T + V = \frac{1}{2}mv^2 + \frac{1}{2}kr^2 = \frac{1}{2}(kr^2) + \frac{1}{2}(kr^2) = kr^2\)
Since \(r^2 = n\hbar \sqrt{\frac{1}{mk}}\), we have \(E = k(n\hbar \sqrt{\frac{1}{mk}}) = n\hbar \sqrt{\frac{k^2}{mk}} = n\hbar \sqrt{\frac{k}{m}}\), which doesn’t correspond to the options given in (D).
Answer: (A, B, C)
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.