To solve the problem, consider the forces and time periods involved in circular motion under combined potentials.
1. Initial circular orbit under gravitational force alone:
Gravitational force: \[ F_g = \frac{G M m}{r_0^2} \] Time period of orbit: \[ T_0 = 2 \pi \sqrt{\frac{r_0^3}{G M}} \] Angular velocity: \[ \omega_0 = \frac{2 \pi}{T_0} = \sqrt{\frac{G M}{r_0^3}} \]
2. Additional central force from potential:
Given potential: \[ V_c(r) = \frac{m \alpha}{r^3} \] Force from this potential (radial inward, since \(\alpha > 0\)): \[ F_c = - \frac{dV_c}{dr} = - m \alpha \frac{d}{dr}\left(\frac{1}{r^3}\right) = - m \alpha (-3 r^{-4}) = \frac{3 m \alpha}{r^4} \]
3. Total radial force for circular motion at \(r_0\):
\[ F_{\text{total}} = F_g + F_c = \frac{G M m}{r_0^2} + \frac{3 m \alpha}{r_0^4} \] This force provides the centripetal force for circular motion: \[ m \omega_1^2 r_0 = F_{\text{total}} = m \left(\frac{G M}{r_0^2} + \frac{3 \alpha}{r_0^4}\right) \] \[ \omega_1^2 = \frac{G M}{r_0^3} + \frac{3 \alpha}{r_0^5} \]
4. Relate new time period \(T_1\) to \(\omega_1\):
\[ T_1 = \frac{2 \pi}{\omega_1} \implies \omega_1 = \frac{2 \pi}{T_1} \] Square both sides: \[ \omega_1^2 = \frac{4 \pi^2}{T_1^2} \] Similarly, \[ \omega_0^2 = \frac{4 \pi^2}{T_0^2} = \frac{G M}{r_0^3} \]
5. Substitute \(\omega_1^2\):
\[ \frac{4 \pi^2}{T_1^2} = \frac{G M}{r_0^3} + \frac{3 \alpha}{r_0^5} \] Rearranged: \[ \frac{4 \pi^2}{T_1^2} - \frac{4 \pi^2}{T_0^2} = \frac{3 \alpha}{r_0^5} \] Divide both sides by \(4 \pi^2\): \[ \frac{1}{T_1^2} - \frac{1}{T_0^2} = \frac{3 \alpha}{4 \pi^2 r_0^5} \]
6. Express \(\frac{T_1^2 - T_0^2}{T_1^2}\):
\[ \frac{T_1^2 - T_0^2}{T_1^2} = 1 - \frac{T_0^2}{T_1^2} = 1 - \frac{1/T_1^2}{1/T_0^2} = 1 - \frac{\frac{1}{T_1^2}}{\frac{1}{T_0^2}} = 1 - \frac{1/T_1^2}{1/T_0^2} \] \[ = \frac{\frac{1}{T_0^2} - \frac{1}{T_1^2}}{\frac{1}{T_0^2}} = \frac{\frac{3 \alpha}{4 \pi^2 r_0^5}}{\frac{1}{T_0^2}} = 3 \alpha \cdot \frac{T_0^2}{4 \pi^2 r_0^5} \]
Using \(T_0^2 = \frac{4 \pi^2 r_0^3}{G M}\), substitute:
\[ \frac{T_1^2 - T_0^2}{T_1^2} = 3 \alpha \cdot \frac{\frac{4 \pi^2 r_0^3}{G M}}{4 \pi^2 r_0^5} = 3 \alpha \cdot \frac{r_0^3}{G M r_0^5} = \frac{3 \alpha}{G M r_0^2} \]
Final Answer:
\[ \boxed{\frac{3 \alpha}{G M r_0^2}} \]
1. Starting with the given equation:
We are given the equation that relates the gravitational force and the centripetal force:
$ \frac{Gmm}{r_0^2} - \frac{3\alpha m}{r_0^4} = \frac{mv^2}{r_0} $
2. Rearranging the expression:
From this, we can solve for the expression for \( v^2 \):
$ v^2 = \frac{Gm}{r_0^2} - \frac{3\alpha}{r_0^3} $
3. Expression for the period \( T \):
The formula for the period \( T \) of revolution is:
$ T = \frac{2\pi r_0}{v} $
4. Substituting \( v^2 \):
Substitute the expression for \( v^2 \) into the equation for \( T \):
$ T = \frac{2\pi r_0}{\sqrt{\frac{Gm}{r_0^2} - \frac{3\alpha}{r_0^3}}} $
5. Squaring both sides:
Squaring both sides of the equation:
$ T^2 = \frac{4\pi^2 r_0^3}{Gm - 3\alpha} $
6. Using the ratio \( \frac{T_3^2 - T_2^2}{T_1^2} \):
Now, using the ratio \( \frac{T_3^2 - T_2^2}{T_1^2} \), we get:
$ \frac{T_3^2 - T_2^2}{T_2^2} = 1 - \frac{T_1^2}{T_2^2} $
7. Substituting the expression for \( T^2 \):
Substituting the expression for \( T^2 \) into the ratio:
$ = 1 - \frac{4\pi^2 r_0^3}{Gm} \times \frac{r_0^2}{4\pi^2 r_0^2} $
8. Simplifying the expression:
Simplifying the expression further:
$ = 1 - 1 + \frac{3\alpha}{Gm r_0^2} $
9. Final result:
The final result is:
$ = \frac{3\alpha}{GMr_0^2} $
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hookeβs law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 