The additional force due to the potential is given by:
\[ F = -\frac{dV}{dr} = -\frac{3\alpha m}{r^4} \]
The net centripetal force acting on the particle is:
\[ F_{\text{net}} = \frac{GMm}{r^2} + \frac{3\alpha m}{r^4} \]
The modified time period is:
\[ T_1 = \frac{2\pi r_0}{v} \] where \( v \) is: \[ v = \sqrt{\frac{GM}{r_0} + \frac{3\alpha}{r_0^3}} \] Thus: \[ T_1 = \frac{4\pi^2 r_0^3}{GM + 3\alpha r_0^3} \]
The original time period without the additional force is:
\[ T_0 = \frac{4\pi^2 r_0^3}{GM} \]
The difference in time periods can be expressed as:
\[ \frac{T_1 - T_0}{T_1} \] Substituting \( T_0 \) and \( T_1 \): \[ \frac{T_1 - T_0}{T_1} = -1 - \frac{T_0}{T_1} \] Expanding and simplifying: \[ \frac{T_1 - T_0}{T_0} = \frac{T_1 - T_0}{T_1} + \frac{T_0}{T_1} \] This simplifies to: \[ \frac{T_1 - T_0}{T_0} = \frac{3\alpha}{GM r_0^2} \]
The difference in the time periods is given by:
\[ \frac{T_1 - T_0}{T_0} = \frac{3\alpha}{GM r_0^2} \]