To solve the problem, consider the forces and time periods involved in circular motion under combined potentials.
1. Initial circular orbit under gravitational force alone:
Gravitational force: \[ F_g = \frac{G M m}{r_0^2} \] Time period of orbit: \[ T_0 = 2 \pi \sqrt{\frac{r_0^3}{G M}} \] Angular velocity: \[ \omega_0 = \frac{2 \pi}{T_0} = \sqrt{\frac{G M}{r_0^3}} \]
2. Additional central force from potential:
Given potential: \[ V_c(r) = \frac{m \alpha}{r^3} \] Force from this potential (radial inward, since \(\alpha > 0\)): \[ F_c = - \frac{dV_c}{dr} = - m \alpha \frac{d}{dr}\left(\frac{1}{r^3}\right) = - m \alpha (-3 r^{-4}) = \frac{3 m \alpha}{r^4} \]
3. Total radial force for circular motion at \(r_0\):
\[ F_{\text{total}} = F_g + F_c = \frac{G M m}{r_0^2} + \frac{3 m \alpha}{r_0^4} \] This force provides the centripetal force for circular motion: \[ m \omega_1^2 r_0 = F_{\text{total}} = m \left(\frac{G M}{r_0^2} + \frac{3 \alpha}{r_0^4}\right) \] \[ \omega_1^2 = \frac{G M}{r_0^3} + \frac{3 \alpha}{r_0^5} \]
4. Relate new time period \(T_1\) to \(\omega_1\):
\[ T_1 = \frac{2 \pi}{\omega_1} \implies \omega_1 = \frac{2 \pi}{T_1} \] Square both sides: \[ \omega_1^2 = \frac{4 \pi^2}{T_1^2} \] Similarly, \[ \omega_0^2 = \frac{4 \pi^2}{T_0^2} = \frac{G M}{r_0^3} \]
5. Substitute \(\omega_1^2\):
\[ \frac{4 \pi^2}{T_1^2} = \frac{G M}{r_0^3} + \frac{3 \alpha}{r_0^5} \] Rearranged: \[ \frac{4 \pi^2}{T_1^2} - \frac{4 \pi^2}{T_0^2} = \frac{3 \alpha}{r_0^5} \] Divide both sides by \(4 \pi^2\): \[ \frac{1}{T_1^2} - \frac{1}{T_0^2} = \frac{3 \alpha}{4 \pi^2 r_0^5} \]
6. Express \(\frac{T_1^2 - T_0^2}{T_1^2}\):
\[ \frac{T_1^2 - T_0^2}{T_1^2} = 1 - \frac{T_0^2}{T_1^2} = 1 - \frac{1/T_1^2}{1/T_0^2} = 1 - \frac{\frac{1}{T_1^2}}{\frac{1}{T_0^2}} = 1 - \frac{1/T_1^2}{1/T_0^2} \] \[ = \frac{\frac{1}{T_0^2} - \frac{1}{T_1^2}}{\frac{1}{T_0^2}} = \frac{\frac{3 \alpha}{4 \pi^2 r_0^5}}{\frac{1}{T_0^2}} = 3 \alpha \cdot \frac{T_0^2}{4 \pi^2 r_0^5} \]
Using \(T_0^2 = \frac{4 \pi^2 r_0^3}{G M}\), substitute:
\[ \frac{T_1^2 - T_0^2}{T_1^2} = 3 \alpha \cdot \frac{\frac{4 \pi^2 r_0^3}{G M}}{4 \pi^2 r_0^5} = 3 \alpha \cdot \frac{r_0^3}{G M r_0^5} = \frac{3 \alpha}{G M r_0^2} \]
Final Answer:
\[ \boxed{\frac{3 \alpha}{G M r_0^2}} \]
1. Starting with the given equation:
We are given the equation that relates the gravitational force and the centripetal force:
$ \frac{Gmm}{r_0^2} - \frac{3\alpha m}{r_0^4} = \frac{mv^2}{r_0} $
2. Rearranging the expression:
From this, we can solve for the expression for \( v^2 \):
$ v^2 = \frac{Gm}{r_0^2} - \frac{3\alpha}{r_0^3} $
3. Expression for the period \( T \):
The formula for the period \( T \) of revolution is:
$ T = \frac{2\pi r_0}{v} $
4. Substituting \( v^2 \):
Substitute the expression for \( v^2 \) into the equation for \( T \):
$ T = \frac{2\pi r_0}{\sqrt{\frac{Gm}{r_0^2} - \frac{3\alpha}{r_0^3}}} $
5. Squaring both sides:
Squaring both sides of the equation:
$ T^2 = \frac{4\pi^2 r_0^3}{Gm - 3\alpha} $
6. Using the ratio \( \frac{T_3^2 - T_2^2}{T_1^2} \):
Now, using the ratio \( \frac{T_3^2 - T_2^2}{T_1^2} \), we get:
$ \frac{T_3^2 - T_2^2}{T_2^2} = 1 - \frac{T_1^2}{T_2^2} $
7. Substituting the expression for \( T^2 \):
Substituting the expression for \( T^2 \) into the ratio:
$ = 1 - \frac{4\pi^2 r_0^3}{Gm} \times \frac{r_0^2}{4\pi^2 r_0^2} $
8. Simplifying the expression:
Simplifying the expression further:
$ = 1 - 1 + \frac{3\alpha}{Gm r_0^2} $
9. Final result:
The final result is:
$ = \frac{3\alpha}{GMr_0^2} $
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is: