Step 1: Analyze the motion
Step 2: Total time taken
The total time is:
\[ \text{Total time} = t_1 + 2t = \frac{S}{6} + 2 \cdot \frac{S}{24}. \]
Simplify:
\[ \text{Total time} = \frac{S}{6} + \frac{S}{12} = \frac{2S}{12} + \frac{S}{12} = \frac{3S}{12} = \frac{S}{4}. \]
Step 3: Average speed
The average speed is given by:
\[ \text{Average speed} = \frac{\text{Total distance}}{\text{Total time}}. \]
Simplify:
\[ \text{Average speed} = \frac{2S}{\frac{S}{4}}. \]
\[ \text{Average speed} = \frac{2S \cdot 4}{S} = 8 \, \text{m/s}. \]
Final Answer: \(8 \, \text{m/s}\).
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
Given below are two statements:
Statement (I): A spectral line will be observed for a \(2p_x \rightarrow 2p_y\) transition.
Statement (II): \(2p_x\) and \(2p_y\) are degenerate orbitals.
In the light of the above statements, choose the correct answer from the options given below:
The molar solubility(s) of zirconium phosphate with molecular formula \( \text{Zr}^{4+} \text{PO}_4^{3-} \) is given by relation: