Let the equation of SHM be $x = A\sin(\omega t)$, where $A$ is the amplitude and $\omega$ is the angular frequency. Since the particle starts from the mean position, the initial phase is 0. Kinetic energy $K = \frac{1}{2}m\omega^2(A^2 - x^2) = \frac{1}{2}m\omega^2 A^2 \cos^2(\omega t)$. Total energy $E = \frac{1}{2}m\omega^2 A^2$. The ratio of kinetic to total energy is $\frac{K}{E} = \cos^2(\omega t)$. We are given that $\frac{K}{E} = \frac{3}{4}$, so $\cos^2(\omega t) = \frac{3}{4}$. $\cos(\omega t) = \pm\frac{\sqrt{3}}{2}$. The time period $T = 1.5$ s, so $\omega = \frac{2\pi}{T} = \frac{2\pi}{1.5} = \frac{4\pi}{3}$. $\omega t = \frac{\pi}{6}$, so $t = \frac{\pi/6}{4\pi/3} = \frac{1}{8}$ s. This is the minimum time.