Given: - Velocity of the particle: \( v = 4\sqrt{x} \, \mathrm{m/s} \) - The particle starts from rest at \( x = 0 \).
The velocity \( v \) is given by: \[ v = 4\sqrt{x} \] Squaring both sides: \[ v^2 = (4\sqrt{x})^2 = 16x \]
The acceleration \( a \) is given by: \[ a = v \frac{dv}{dx} \] Differentiating \( v^2 = 16x \) with respect to \( x \): \[ \frac{d(v^2)}{dx} = 16 \] Using the chain rule: \[ 2v \frac{dv}{dx} = 16 \] Rearranging: \[ v \frac{dv}{dx} = 8 \] Thus, the acceleration is: \[ a = 8 \, \mathrm{ms^{-2}} \]
Conclusion: The acceleration of the particle is \( 8 \, \mathrm{ms^{-2}} \).
An object has moved through a distance can it have zero displacement if yes support your answer with an example.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: