At mean position:
\[ v_{\text{max}} = A \omega = 10 \Rightarrow \omega = \frac{10}{4} = \frac{5}{2} \]
Using the equation \( v = \omega \sqrt{A^2 - x^2} \) and \( v = 5 \):
\[ 5 = \frac{5}{2} \sqrt{4^2 - x^2} \]
Solving,
\[ \sqrt{A^2 - x^2} = 2 \Rightarrow x^2 = A^2 - 4 = 16 - 4 = 12 \]
Thus, \( x = \sqrt{12} \) and \( \alpha = 12 \).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: