1. Initial Capacitance and Charge on Capacitor:
The initial capacitance \( C_0 = 12.5 \, \text{pF} \), and the initial charge on the capacitor \( Q = C_0V \).
2. Capacitance with Dielectric Inserted:
After inserting a dielectric with dielectric constant \( \epsilon_r = 6 \), the new capacitance becomes:
\[ C_f = \epsilon_r C_0. \]
3. Change in Potential Energy:
The change in potential energy of the capacitor is given by:
\[ \Delta U = U_i - U_f = \frac{Q^2}{2C_i} - \frac{Q^2}{2C_f}. \] Substituting \( Q = C_0V \) and simplifying:
\[ \Delta U = \frac{(C_0V)^2}{2C_0} \left[ 1 - \frac{1}{\epsilon_r} \right] = \frac{1}{2} C_0V^2 \left[ 1 - \frac{1}{6} \right]. \]
4. Calculation:
Substitute \( C_0 = 12.5 \, \text{pF}, \, V = 12 \, \text{V}, \, \text{and} \, \epsilon_r = 6 \):
\[ \Delta U = \frac{1}{2} \times 12.5 \times 10^{-12} \times (12)^2 \times \frac{5}{6}. \] Simplifying further:
\[ \Delta U = 750 \, \text{pJ} = 750 \times 10^{-12} \, \text{J}. \]
Answer: \( 750 \times 10^{-12} \, \text{J} \)
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: