1. Initial Capacitance and Charge on Capacitor:
The initial capacitance \( C_0 = 12.5 \, \text{pF} \), and the initial charge on the capacitor \( Q = C_0V \).
2. Capacitance with Dielectric Inserted:
After inserting a dielectric with dielectric constant \( \epsilon_r = 6 \), the new capacitance becomes:
\[ C_f = \epsilon_r C_0. \]
3. Change in Potential Energy:
The change in potential energy of the capacitor is given by:
\[ \Delta U = U_i - U_f = \frac{Q^2}{2C_i} - \frac{Q^2}{2C_f}. \] Substituting \( Q = C_0V \) and simplifying:
\[ \Delta U = \frac{(C_0V)^2}{2C_0} \left[ 1 - \frac{1}{\epsilon_r} \right] = \frac{1}{2} C_0V^2 \left[ 1 - \frac{1}{6} \right]. \]
4. Calculation:
Substitute \( C_0 = 12.5 \, \text{pF}, \, V = 12 \, \text{V}, \, \text{and} \, \epsilon_r = 6 \):
\[ \Delta U = \frac{1}{2} \times 12.5 \times 10^{-12} \times (12)^2 \times \frac{5}{6}. \] Simplifying further:
\[ \Delta U = 750 \, \text{pJ} = 750 \times 10^{-12} \, \text{J}. \]
Answer: \( 750 \times 10^{-12} \, \text{J} \)
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).