To solve the problem of finding the potential difference across capacitor $C_2$, follow these steps:
Step 1: Find the equivalent capacitance for capacitors in series using the formula:
$$ \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} $$
Substitute values: $$ \frac{1}{C_{eq}} = \frac{1}{4\mu F} + \frac{1}{6\mu F} $$
$$ \frac{1}{C_{eq}} = \frac{3}{12\mu F} + \frac{2}{12\mu F} $$
$$ \frac{1}{C_{eq}} = \frac{5}{12\mu F} $$
Thus, $$ C_{eq} = \frac{12}{5}\mu F = 2.4\mu F $$
Step 2: Using the formula $Q = C \cdot V$, the total charge $Q$ on capacitors in series is the same:
Substitute $C_{eq}$ and $V_{total}$:
$$ Q = C_{eq} \cdot V_{total} = 2.4\mu F \cdot 60V = 144\mu C $$
Step 3: Find the potential difference across $C_2$. From $Q = C \cdot V$, rearrange for $V$:
$$ V_{C_2} = \frac{Q}{C_2} = \frac{144\mu C}{6\mu F} $$
$$ V_{C_2} = 24V $$
Thus, the potential difference across $C_2$ is 24 V.