The angular position of the $n$-th order minima is given by:
\[\sin \theta = \frac{n \lambda}{b}.\]
For the second-order minima ($n = 2$):
\[\sin \theta = \frac{2 \cdot 600 \times 10^{-9}}{0.4 \times 10^{-3}}.\]
\[\sin \theta = 3 \times 10^{-3}.\]
The total divergence is:
\[\text{Total divergence} = 2 \cdot 3 \times 10^{-3} = 6 \times 10^{-3} \, \text{rad}.\]
Final Answer:
$6 \times 10^{-3} \, \text{rad}$.
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $