The angular position of the $n$-th order minima is given by:
\[\sin \theta = \frac{n \lambda}{b}.\]
For the second-order minima ($n = 2$):
\[\sin \theta = \frac{2 \cdot 600 \times 10^{-9}}{0.4 \times 10^{-3}}.\]
\[\sin \theta = 3 \times 10^{-3}.\]
The total divergence is:
\[\text{Total divergence} = 2 \cdot 3 \times 10^{-3} = 6 \times 10^{-3} \, \text{rad}.\]
Final Answer:
$6 \times 10^{-3} \, \text{rad}$.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: