Step 1: Write the general equation of the parabola.
Since the axis is parallel to the Y-axis, the parabola has the form:
\[
y = ax^2 + bx + c
\]
We need to find \(a\), \(b\), and \(c\) using the given points.
Step 2: Substitute the points to form equations.
For \(\left(0, \frac{2}{5}\right)\):
\[
\frac{2}{5} = a(0)^2 + b(0) + c \implies c = \frac{2}{5} \quad (1)
\]
For \((4, -2)\):
\[
-2 = a(4)^2 + b(4) + c \implies -2 = 16a + 4b + c \quad (2)
\]
For \(\left(1, \frac{8}{5}\right)\):
\[
\frac{8}{5} = a(1)^2 + b(1) + c \implies \frac{8}{5} = a + b + c \quad (3)
\]
Step 3: Solve the system of equations.
From (1), \(c = \frac{2}{5}\). Substitute into (2) and (3):
Equation (2):
\[
-2 = 16a + 4b + \frac{2}{5} \implies 16a + 4b = -2 - \frac{2}{5} = -\frac{12}{5} \implies 4a + b = -\frac{3}{5} \quad (4)
\]
Equation (3):
\[
\frac{8}{5} = a + b + \frac{2}{5} \implies a + b = \frac{8}{5} - \frac{2}{5} = \frac{6}{5} \quad (5)
\]
Subtract (4) from (5):
\[
(a + b) - (4a + b) = \frac{6}{5} - \left(-\frac{3}{5}\right) \implies -3a = \frac{9}{5} \implies a = -\frac{3}{5}
\]
Substitute \(a = -\frac{3}{5}\) into (5):
\[
-\frac{3}{5} + b = \frac{6}{5} \implies b = \frac{6}{5} + \frac{3}{5} = \frac{9}{5}
\]
So, \(a = -\frac{3}{5}\), \(b = \frac{9}{5}\), \(c = \frac{2}{5}\). The equation of the parabola is:
\[
y = -\frac{3}{5}x^2 + \frac{9}{5}x + \frac{2}{5}
\]
Step 4: Test the options to find which point lies on the parabola.
Option (1) \(\left(3, \frac{5}{2}\right)\):
\[
y = -\frac{3}{5}(3)^2 + \frac{9}{5}(3) + \frac{2}{5} = -\frac{27}{5} + \frac{27}{5} + \frac{2}{5} = \frac{2}{5} \neq \frac{5}{2}
\]
Option (2) \((-1, 2)\):
\[
y = -\frac{3}{5}(-1)^2 + \frac{9}{5}(-1) + \frac{2}{5} = -\frac{3}{5} - \frac{9}{5} + \frac{2}{5} = -\frac{10}{5} = -2 \neq 2
\]
Option (3) \(\left(-2, \frac{28}{5}\right)\):
\[
y = -\frac{3}{5}(-2)^2 + \frac{9}{5}(-2) + \frac{2}{5} = -\frac{12}{5} - \frac{18}{5} + \frac{2}{5} = -\frac{28}{5} \neq \frac{28}{5}
\]
Option (4) \(\left(2, \frac{8}{5}\right)\):
\[
y = -\frac{3}{5}(2)^2 + \frac{9}{5}(2) + \frac{2}{5} = -\frac{12}{5} + \frac{18}{5} + \frac{2}{5} = \frac{8}{5}
\]
This matches, so \((2, \frac{8}{5})\) lies on the parabola.
Final Answer:
\[
\boxed{4}
\]