Given equation of parabola is
$y^{2}=16 x$
On differentiating both sides, we get
$2 y y'=16$
$y'=\frac{16}{2 y}=\frac{8}{y}$
$\therefore$ Slope of tangent at point $\left(x_{1}, y_{1}\right), m_{1}=\frac{8}{y_{1}}$
and slope of normal at point $\left(x_{1}, y_{1}\right), m_{2}=\frac{-y_{1}}{8}$
Since, normal makes equal angle with both $X$ and $Y$ -axes, then
$m_{2}=\pm 1$
$\Rightarrow \frac{-y_{1}}{8}=\pm 1$
$\Rightarrow -y_{1}=\pm 8$
Now, when $y_{1}=8$, then $x_{1}=4$
when $y_{1}=-8$, then $x_{1}=4$
So, the required point is $(4,-8)$