The specific heat capacities at constant volume are:
\[ (C_V)_{\text{mono}} = \frac{3}{2}R, \quad (C_V)_{\text{dia}} = \frac{5}{2}R. \]
The ratio is:
\[ \frac{(C_V)_{\text{mono}}}{(C_V)_{\text{dia}}} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = \frac{3}{5}. \]
Final Answer: \(3 : 5\).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: