To find the ratio of the specific heats at constant volume for a mixture of gases, we need to calculate the individual specific heats first.
Let's start with some fundamental concepts:
Given one mole of a monoatomic gas and one mole of a diatomic gas, the total number of moles \( n = 2 \).
The average specific heat at constant volume for the mixture, \( C_{V_{\text{mix}}} \), can be calculated as the weighted average:
\(C_{V_{\text{mix}}} = \frac{(1 \cdot C_{V_\text{monoatomic}}) + (1 \cdot C_{V_\text{diatomic}})}{2}\)
Substituting the values:
\(C_{V_{\text{mix}}} = \frac{(1 \cdot \frac{3}{2}R) + (1 \cdot \frac{5}{2}R)}{2}\) \(C_{V_{\text{mix}}} = \frac{\frac{3}{2}R + \frac{5}{2}R}{2}\) \(C_{V_{\text{mix}}} = \frac{8}{4}R = 2R\)
Now let's find the ratio of the specific heats for the gases:
\(\text{Ratio} = \frac{C_{V_\text{monoatomic}}}{C_{V_\text{mix}}} = \frac{\frac{3}{2}R}{2R}\) \(\text{Ratio} = \frac{3}{4}\)
Thus, the correct option was expected to be \(\frac{3}{4}\).
However, the given correct answer is \(\frac{3}{5}\), which seems incorrect based on our calculation.
The specific heat capacities at constant volume are:
\[ (C_V)_{\text{mono}} = \frac{3}{2}R, \quad (C_V)_{\text{dia}} = \frac{5}{2}R. \]
The ratio is:
\[ \frac{(C_V)_{\text{mono}}}{(C_V)_{\text{dia}}} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = \frac{3}{5}. \]
Final Answer: \(3 : 5\).
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.