To find the ratio of the specific heats at constant volume for a mixture of gases, we need to calculate the individual specific heats first.
Let's start with some fundamental concepts:
Given one mole of a monoatomic gas and one mole of a diatomic gas, the total number of moles \( n = 2 \).
The average specific heat at constant volume for the mixture, \( C_{V_{\text{mix}}} \), can be calculated as the weighted average:
\(C_{V_{\text{mix}}} = \frac{(1 \cdot C_{V_\text{monoatomic}}) + (1 \cdot C_{V_\text{diatomic}})}{2}\)
Substituting the values:
\(C_{V_{\text{mix}}} = \frac{(1 \cdot \frac{3}{2}R) + (1 \cdot \frac{5}{2}R)}{2}\) \(C_{V_{\text{mix}}} = \frac{\frac{3}{2}R + \frac{5}{2}R}{2}\) \(C_{V_{\text{mix}}} = \frac{8}{4}R = 2R\)
Now let's find the ratio of the specific heats for the gases:
\(\text{Ratio} = \frac{C_{V_\text{monoatomic}}}{C_{V_\text{mix}}} = \frac{\frac{3}{2}R}{2R}\) \(\text{Ratio} = \frac{3}{4}\)
Thus, the correct option was expected to be \(\frac{3}{4}\).
However, the given correct answer is \(\frac{3}{5}\), which seems incorrect based on our calculation.
The specific heat capacities at constant volume are:
\[ (C_V)_{\text{mono}} = \frac{3}{2}R, \quad (C_V)_{\text{dia}} = \frac{5}{2}R. \]
The ratio is:
\[ \frac{(C_V)_{\text{mono}}}{(C_V)_{\text{dia}}} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = \frac{3}{5}. \]
Final Answer: \(3 : 5\).
Match List - I with List - II.

1.24 g of $ {AX}_2 $ (molar mass 124 g mol$^{-1}$) is dissolved in 1 kg of water to form a solution with boiling point of 100.105$^\circ$C, while 2.54 g of $ {AY}_2 $ (molar mass 250 g mol$^{-1}$) in 2 kg of water constitutes a solution with a boiling point of 100.026$^\circ$C. $ K_{b(H_2O)} = 0.52 \, \text{K kg mol}^{-1} $. Which of the following is correct?
For the reaction:

The correct order of set of reagents for the above conversion is :
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
