Consider the Semi-circular Arc of the Wire:
Length of the semi-circular arc: \( L = \pi R \), where \( R \) is the radius of the semicircle.
Mass per unit length of the wire, \( \lambda = \frac{M}{L} = \frac{M}{\pi R} \).
Gravitational Force Element \( dF \):
Consider a small element \( dl \) of the arc at an angle \( \theta \) from the center, with a mass \( dm \):
\[ dm = \lambda dl = \frac{M}{\pi R} \times R d\theta = \frac{M}{\pi} d\theta \]
The gravitational force \( dF \) exerted by this element on the particle of mass \( m \) at the center is:
\[ dF = \frac{G \times m \times dm}{R^2} = \frac{Gm \times \frac{M}{\pi} d\theta}{R^2} = \frac{GmM}{\pi R^2} d\theta \]
Resolve \( dF \) into Components:
Each element of the arc exerts a gravitational force toward itself. The horizontal components (along the x-axis) will cancel due to symmetry, and only the vertical components (along the y-axis) will add up.
The vertical component of \( dF \) is:
\[ dF_y = dF \cos \theta = \frac{GmM}{\pi R^2} \cos \theta \, d\theta \]
Integrate \( dF_y \) Over the Semicircle:
To find the total gravitational force \( F_y \) on the particle, integrate \( dF_y \) from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \):
\[ F_y = \int_{-\pi/2}^{\pi/2} \frac{GmM}{\pi R^2} \cos \theta \, d\theta \]
\[ F_y = \frac{GmM}{\pi R^2} \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta \]
\[ F_y = \frac{GmM}{\pi R^2} \left[ \sin \theta \right]_{-\pi/2}^{\pi/2} \]
\[ F_y = \frac{GmM}{\pi R^2} \left( \sin \frac{\pi}{2} - \sin \left( -\frac{\pi}{2} \right) \right) \]
\[ F_y = \frac{GmM}{\pi R^2} (1 + 1) = \frac{2GmM}{\pi R^2} \]
Substitute \( R = \frac{L}{\pi} \):
Since \( L = \pi R \), we have \( R = \frac{L}{\pi} \).
Substitute this into the expression for \( F_y \):
\[ F_y = \frac{2GmM}{\pi \left( \frac{L}{\pi} \right)^2} = \frac{2GmM\pi}{L^2} \]
Conclusion:
The gravitational force on the particle by the wire is:
\[ F = \frac{2GmM\pi}{L^2} \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: