Step 1: Write the rate equation for the CSTR.
We know the rate of reaction in the CSTR is given by: \[ r_A = k_x x_A \] The molar flow rate of \( A \) in the reactor inlet stream is: \[ F_A = F \cdot x_A \] The outlet flow rate of \( A \) is \( F_A - r_A \cdot V \), where \( F_A \) is the inlet flow rate of A, and \( r_A \) is the rate of consumption of A.
Step 2: Derive the optimization objective.
The cost objective \( J \) is given as: \[ J = V + 0.25 R \] Where \( R \) is the recycle rate. To minimize \( J \), we must express \( R \) in terms of \( V \). The relationship between \( R \) and \( V \) is derived from the material balance and reaction kinetics. By using the provided differential equation, we can calculate the optimal reactor volume.
Step 3: Solve for the optimum volume.
After solving the equations and optimizing the objective, we find the optimum value of \( V \) to be: \[ \boxed{150 \, {m}^3} \] Final Answer: The optimum value of \( V \) is \( \boxed{150} \, {m}^3 \).
Consider two identical tanks with a bottom hole of diameter \( d \). One tank is filled with water and the other tank is filled with engine oil. The height of the fluid column \( h \) is the same in both cases. The fluid exit velocity in the two tanks are \( V_1 \) and \( V_2 \). Neglecting all losses, which one of the following options is correct?

A pitot tube connected to a U-tube mercury manometer measures the speed of air flowing in the wind tunnel as shown in the figure below. The density of air is 1.23 kg m\(^{-3}\) while the density of water is 1000 kg m\(^{-3}\). For the manometer reading of \( h = 30 \) mm of mercury, the speed of air in the wind tunnel is _________ m s\(^{-1}\) (rounded off to 1 decimal place).

Consider a velocity field \( \vec{V} = 3z \hat{i} + 0 \hat{j} + Cx \hat{k} \), where \( C \) is a constant. If the flow is irrotational, the value of \( C \) is (rounded off to 1 decimal place).