To solve the problem, we begin by understanding the relationship between the frequency of oscillations and the mass attached to the spring, given by the formula for the frequency of a mass-spring system: \( f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \), where \( k \) is the spring constant and \( m \) is the mass.
For mass \( m \), the frequency is \( f_1 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \).
For mass \( 9m \), the frequency is \( f_2 = \frac{1}{2\pi} \sqrt{\frac{k}{9m}} = \frac{1}{2\pi} \frac{1}{3} \sqrt{\frac{k}{m}} = \frac{1}{3} \cdot f_1 \).
Thus, \(\frac{f_1}{f_2} = \frac{f_1}{\frac{1}{3}f_1} = 3\).
Hence, the value of \(\frac{f_1}{f_2}\) is clearly \( 3 \), which falls within the given range 3,3.
Given: - Mass of first system: \( m \) - Mass of second system: \( 9m \) - Frequencies: \( f_1 \) and \( f_2 \)
The frequency of oscillation of a mass-spring system is given by:
\[ f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \]
where \( k \) is the spring constant and \( m \) is the mass.
For the first system with mass \( m \):
\[ f_1 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \]
For the second system with mass \( 9m \):
\[ f_2 = \frac{1}{2\pi} \sqrt{\frac{k}{9m}} = \frac{1}{2\pi} \cdot \frac{1}{3} \sqrt{\frac{k}{m}} = \frac{f_1}{3} \]
\[ \frac{f_1}{f_2} = \frac{f_1}{\frac{f_1}{3}} = 3 \]
Conclusion: The value of \( \frac{f_1}{f_2} \) is \( 3 \).
A particle is subjected to simple harmonic motions as: $ x_1 = \sqrt{7} \sin 5t \, \text{cm} $ $ x_2 = 2 \sqrt{7} \sin \left( 5t + \frac{\pi}{3} \right) \, \text{cm} $ where $ x $ is displacement and $ t $ is time in seconds. The maximum acceleration of the particle is $ x \times 10^{-2} \, \text{m/s}^2 $. The value of $ x $ is:
Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 